Spelling suggestions: "subject:"all mills."" "subject:"fall mills.""
31 |
Effects of mill rotational speed on the batch grinding kinetics of a UG2 platinum oreMakgoale, Dineo Mokganyetji 11 1900 (has links)
In this study, the effect of speed was investigated on the breakage rate of UG2
platinum ore in a batch mill of 5 dm3 and 175 mm internal diameter. One size fraction
method was carried out to perform the experiment. Five mono-sized fractions in the
range of 1.180 mm to 0.212 mm separated by √2 series interval were prepared. The
fractions were milled at different grinding times (0.5, 2, 4, 15 and 30 min) and three
fractions of mill critical speed were considered (20%, 30%, and 40%). The target of
critical speed below 50% was due to the need of lower energy consumption in milling
processes. The selection and breakage function parameters were determined and
compared for fractions of critical speed.
First the grinding kinetics of the ore was determined and it was found that the
material breaks in non-first order manner. Thereafter, effective mean rate of
breakage was determined. It was found that the rate of breakage increased with
increase of mill speed and optimum speed was not reached in the range of chosen
mill speed fractions. Again the rate of breakage was plotted as a function of particle
size, the optimum size was 0.8 mm when milling at 30% critical speed. As for 20% and
30% optimum size was not reached. The selection function parameters estimated at
30% critical speed were 𝑎0 = 0.04 min−1
, 𝛼 = 1.36, 𝜇 = 0.9 mm, and Λ = 3. Breakage
function parameters were determined and was noticed that the material UG2
platinum ore is non-normalised, i.e. Φ value was changing from 0.25 to 0.90
depending on feed size and mill speed. The parameters 𝛽 and 𝛾 were constant at 7.3
and 1.17 respectively. / College of Science, Engineering and Technology / M. Tech. (Chemical Engineering)
|
32 |
Data acquisition system for pilot millMolepo, Isaih Kgabe 04 1900 (has links)
This dissertation describes the development, design, implementation and evaluation of a data
acquisition system, with the main aim of using it for data collection on a laboratory pilot ball
mill. An open-source prototype hardware platform was utilised in the implementation of the
data acquisition function, however, with limitations. An analogue signal conditioning card has
been successfully developed to interface the analogue signals to the dual domain ADC
module. Model-based software development was used to design and develop the algorithms to
control the DAS acquisition process, but with limited capabilities. A GUI application has been
developed and used for the collection and storage of the raw data on the host system. The
DAS prototype was calibrated and collected data successfully through all the channels;
however, the input signal bandwidth was limited to 2Hz. / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)
|
33 |
An integrated model of milling and flotation for the optimal recovery of sulphide ores at the Kansanshi mineLusambo, Martin 11 1900 (has links)
Kansanshi mine sulphide ore circuit did not achieve target flotation recovery in
2016, hence it was deemed necessary to carry out a research aimed at optimizing
this circuit. The objective of the research was to optimise the Kansanshi milling
and flotation circuit processing a copper sulphide ore.
In line with this, samples were obtained around the circuit and processed in the
laboratory for moisture content, slurry concentration, particle size distribution,
and flotation response. This information was then used to build a computer-based
model of the Kansanshi milling and flotation circuit. This was done in MODSIM®,
a software package specialising in the design and simulation of mineral processing
operations. After careful appraisal, appropriate models were selected for the semi
autogenous grinding (SAG) and ball mills, SAG mill discharge screen,
hydrocyclones, pebble crusher, and the flotation cells. The calibrated model was
then used to simulate the effects of key operating parameters on flotation
recovery.
Analysis using the attainable region technique revealed that the SAG mill feed-rate
should be adjusted from 1719 tph to 2090 tph. This would lead to a better
utilisation of the pebble crusher that can process 358 tph of pebbles from the
current 198 tph. From the simulation work, it was established that rougher
flotation recovery can be improved from the current 80.0 % to 82.3 %. The technoeconomic benefits of the proposition are yet to be investigated.
Findings from the research concluded that the milling circuit optimum operating
parameter; which generated a final product falling predominantly in the range -
150 +38 μm were SAG and ball mills conditions of ball sizes 200 and 40mm
respectively, ball mill ball filling 32% and rotational speed between 75 and 80% for
both SAG and ball mills. The optimum hydrocyclone feed slurry concentration was
found to be 62% solids. Additionally, the SAG mill discharge screen aperture size
of 6 mm was the optimum. It must be noted that slurry concentration did not show any impact on both the SAG and ball mills performance. The SAG mill ball
filling did not show any significant improvement on performance. / College of Engineering, Science and Technology / M. Tech. (Chemical Engineering)
|
Page generated in 0.0443 seconds