• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation of semi-batch reactive distillation column for the synthesis of methyl palmitate

Aqar, D.Y., Abbas, A.S., Patel, Rajnikant, Mujtaba, Iqbal M. 28 March 2022 (has links)
Yes / Synthesis of methyl palmitate (MP) has not been considered in the past using a reactive distillation process (continuous or batch) due to the challenge of keeping the reactants palmitic acid (PA) and methanol (MeOH) together in the reactive zone. MeOH, being the lightest in the reaction mixture, travels up the distillation column as distillation proceeds and will be removed from the system via the distillate in a conventional batch reactive distillation (CBRD) column and thus will limit the conversion of PA. Therefore, in this work semi-batch reactive distillation (SBRD) column is proposed where additional methanol will be fed at the bottom of the column in a continuous mode allowing the chemical reaction to continue. However, as water (H2O) is one of the reaction products and is the second lightest component in the mixture, it will travel up the column next and will be removed in the distillate tank. Also due to wide difference in the boiling points of the reaction products and due to diminishing amount of water in the reboiler, the backward reaction will not be a dominating factor and therefore ignored in this work. With this backdrop, optimal performance of the SBRD column is evaluated in terms of conversion of PA to MP and energy consumption via minimization of the operating batch time for a wide range on MP purity.
2

Feasibility of Integrated Batch Reactive Distillation Columns for the Optimal Synthesis of Ethyl Benzoate

Aqar, D.Y., Rahmanian, Nejat, Mujtaba, Iqbal M. 27 August 2017 (has links)
Yes / The synthesis of ethyl benzoate (EtBZ) via esterification of benzoic acid (BeZ) with ethanol in a reactive distillation is challenging due to complex thermodynamic behaviour of the chemical reaction and the difficulty of keeping the reactants together in the reaction zone (ethanol having the lowest boiling point can separate from the BeZ as the distillation proceeds) causing a significant decrease in the conversion of BeZ in a conventional reactive distillation column (batch or continuous). This might be the reason of not reporting the use of reactive distillation for EtBZ synthesis although the study of BeZ esterification reaction is available in the public literature. Our recently developed Integrated Conventional Batch Distillation (i-CBD) column offers the prospect of revisiting such reactions for the synthesis of EtBZ, which is the focus of this work. Clearly, i-CBD column outperforms the Conventional Batch Distillation (CBD) column in terms of product amount, purity and conversion of BeZ and eliminates the requirement of excess use of ethanol. For example, compared with CBD column, the i-CBD operation can yield EtBZ at a much higher purity (0.925 compared to 0.730) and can convert more benzoic acid (93.57% as opposed to only 74.38%).
3

A novel split-reflux policy in batch reactive distillation for the optimum synthesis of a number of methyl esters

Aqar, D.Y., Rahmanian, Nejat, Mujtaba, Iqbal M. 25 March 2019 (has links)
Yes / The production of a number of methyl esters such as methyl decanoate (MeDC), methyl salicylate (MeSC), and methyl benzoate (MeBZ) by esterification reactions of several carboxylic acids such as decanoic acid (DeC), salicylic acid (ScA), and benzoic acid (BeZ) with methanol, respectively, through a reactive distillation system (batch or continuous) is cost-intensive and operationally challenging operation. It is difficult to keep the reaction species together in the reaction section due to wide boiling point differences between the reactants. Methanol (in those esterification processes) having the lowest boiling temperature in the reaction mixture can separate easily from carboxylic acid as the distillation progresses, resulting in a severe drop in the reaction conversion ratio of the acid employing batch/continuous distillation system. In order to overcome this type of challenge and to increase the overall reaction conversion, a novel split-reflux conventional batch reactive distillation configuration (sr-BRD) is proposed/studied in detail in this investigation. The optimal performance of BRD/ sr-BRD column is determined in terms of maximum achievable conversion of acids, and highest concentration of the esters produced for each chemical reaction scheme. The results for given separation tasks are compared with those obtained using conventional batch distillation (BRD) process. The optimization results clearly show that the sr-BRD process significantly improves the process efficiency, the conversion ratio of acid, and the product purity of methyl esters compared to that obtained via the BRD process.
4

A novel real-time methodology for the simultaneous dynamic optimization and optimal control of batch processes

Rossi, F., Manenti, F., Mujtaba, Iqbal M., Bozzano, G. January 2014 (has links)
No / A novel threefold optimization algorithm is proposed to simultaneously solve the nonlinear model predictive control and dynamic real-time optimization for batch processes while optimizing the batch operation time. Object-oriented programming and parallel computing are exploited to make the algorithm effective to handle industrial cases. A well-known literature case is selected to validate the algorithm.

Page generated in 0.0486 seconds