• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reactions relevant to methane combustion : fundamental kinetic study and modelling

Reid, Ian Allan Beattie January 1984 (has links)
The pyrolysis of dimethyl ether in the presence of a methane bath, over the temperature range 790-850K, follows the simplified reaction scheme numbered 1-5: CH3OCH3 CH3O + CH3 (l) CH3O + CH4 CH3OH + CH3 (2), CH3O + M CH2O + H + M (3),H + CH4H2 + CH3 (4),CH3 + CH3 C2H6 (5) Thus monitoring the level of ethane, or ethylene derived from ethane, yields a measure of the rate of dimethyl ether decomposition, (l) Results obtained from the current work, together with those of other workers obtained over a wider temperature range, yields the rate constant for reaction (l): k1 = 10l6.3 1 .3 exp-81.4 0.3 k cal mol-1. Hence a value for the heat of formation of the methoxy radical is calculated to be 4.1 kcal mol-1. However, both computer modelling of the full reaction scheme and further experimental work has highlighted the importance of sensitised decomposition reactions within this system, reactions (6), (7): CH3 + CH3OCH3 CH4 + CH2OCH3 (6), CH2OCH3 + M CH2O + CH3 (7) For the case where neat dimethyl ether is pyrolysed the reaction is dominated by sensitised decomposition. Computer modeling successfully resolved the mechanism of reaction under the experimental conditions. Attempts to obtain an experimental rate constant for the decomposition of the methoxy radical have proved unsuccessful due to the complex nature of this reaction system. This also proved to be the case where dimethyl ether-d6 acted as the precursor of methoxy-d3. The decomposition of the trifluoromethoxy radical was examined using an RRKM computer model, reconciling the calculated parameters for this radical with the pressure dependent data of Descamps and Forst. This study of the trifluoromethoxy radical yielded data which enabled application of Unimolecular Gas Kinetic Theory to the similar methoxy radical. With so few experimental data on the decomposition of the methoxy radical it was essential to reduce the number of variables prior to applying the RRKM model to this reaction (3). Formaldehyde pyrolysis in a methane bath, over the temperature range 740-910K, was examined to resolve controversy over the mode of formaldehyde decomposition: whether the reaction proceeds by a molecular elimination path, A, or via a radical chain mechanism, B. Although ethane was not observed as a principle product, computer modelling of this reaction indicated that the combination of methyl radicals was the principle termination step. To test for the participation of the molecular elimination pathway (15), the ratio CD2O + M CO + D2 + M (15) RD2/RHD was followed as a fuction of both the formaldehyde-d2 concentration and temperature. As (D) is a function of the concentration of formaldehyde-d2, an intercept will be obtained upon plotting RD2/RHD versus (CD2O)/(CH4) where the molecular elimination path participates. No evidence of the molecular elimination route was obtained. Reaction data for steps (10) and (11) were obtained together with evidence of heterogeneous reaction contributing to the rate of formaldehyde decay.
2

Optimisation of semi-batch reactive distillation column for the synthesis of methyl palmitate

Aqar, D.Y., Abbas, A.S., Patel, Rajnikant, Mujtaba, Iqbal M. 28 March 2022 (has links)
Yes / Synthesis of methyl palmitate (MP) has not been considered in the past using a reactive distillation process (continuous or batch) due to the challenge of keeping the reactants palmitic acid (PA) and methanol (MeOH) together in the reactive zone. MeOH, being the lightest in the reaction mixture, travels up the distillation column as distillation proceeds and will be removed from the system via the distillate in a conventional batch reactive distillation (CBRD) column and thus will limit the conversion of PA. Therefore, in this work semi-batch reactive distillation (SBRD) column is proposed where additional methanol will be fed at the bottom of the column in a continuous mode allowing the chemical reaction to continue. However, as water (H2O) is one of the reaction products and is the second lightest component in the mixture, it will travel up the column next and will be removed in the distillate tank. Also due to wide difference in the boiling points of the reaction products and due to diminishing amount of water in the reboiler, the backward reaction will not be a dominating factor and therefore ignored in this work. With this backdrop, optimal performance of the SBRD column is evaluated in terms of conversion of PA to MP and energy consumption via minimization of the operating batch time for a wide range on MP purity.
3

Investigation of Propellant Chemistry on Rotating Detonation Combustor Operability and Performance

Kevin James Dille (9505169) 08 March 2024 (has links)
<p dir="ltr">Rotating detonation engines (RDEs) are a promising technology by which to increase the efficiency of propulsion and power generation systems. Self-sustained, rotating detonation waves within the combustion chamber provide a means for combustion to occur at elevated local pressures, theoretically resulting in hotter temperature product gas than a constant pressure combustion process could provide at equivalent operating conditions. Despite theoretical advantages of RDEs, the thermodynamic benefit has yet to be achieved in experimental applications. Additionally, much of the experimental work to date has been conducted at mean operating pressures lower than industrial applications will require, especially for rocket or gas turbine combustion environments. The sensitivity of these devices to operating pressure has made clear the importance of chemical reaction rates on the successful operation of these combustors. This work addresses critical risks associated with implementing this technology at flight-relevant conditions by advancing the understanding of deflagrative loss mechanisms on delivered performance and by investigating the coupling between chemical kinetic timescales and operating modes produced by the combustor.</p><p dir="ltr">A novel pressure measurement technique was developed in which the stagnation pressure of exhausting gas produced by the RDC is measured through quantification of the under-expanded exhaust plume divergence angle at megahertz-rates. Time-averaged stagnation pressure measurements obtained with this technique are shown to be within 1.5% of the equivalent available pressure (EAP) measured. Time-resolved stagnation pressure measurements produced by this technique provide a means to quantify the detonation cycle pressure ratio. It was shown that increasing the total mass flow rate through the combustor, therefore increasing the mean operating pressure, results in a decrease in both detonation wave velocities and detonation cycle stagnation pressure ratios.</p><p dir="ltr">Numerical modeling of detonations was conducted to understand the coupling of stagnation pressure ratios and wave speeds to deflagrative modes of combustion within rotating detonation combustors. Using the experimental measurements, it is shown that significant amounts of propellant combusts as a result of deflagration prior to (i.e., preburning) and after (i.e., afterburning) the detonation wave. Increasing the RDC operating pressure by 4x is shown to increase the amount of preburned propellant by 4.5x. Relevant chemical kinetic reaction rates of the conditions tested are modeled to increase by 4.5x as well, indicating that the increase in reactant preburning is the result of faster chemical kinetic timescales associated with higher pressure combustion. Results from this testing suggest an operating pressure upper limit for this combustor exists around 20 bar. At these conditions, chemical kinetic rates would be fast enough that deflagration would be the primary mode of combustion and the detonation would not exist. It is suggested that different injector or combustor designs might be able to extend operating limits, however it is unclear if there is a chemical kinetic limit at which no design would be able to overcome.</p><p dir="ltr">Despite significant amounts of deflagrative combustion within the RDC, the vacuum specific impulse produced by the RDC was shown to be between 95.0% and 98.5% of what an ideal deflagrative combustor could produce for most conditions. Given conventional rocket combustors typically operate at specific impulse efficiencies in the range of 90%-99%, it is noted that the RDC tested in this work has demonstrated, at the very least, equal performance to the current state of the art for rocket propulsion combustors while utilizing an effective combustor length (L*) of only 63 mm (2.5 inches). A detailed RDC performance model was developed which considered losses associated with deflagration (both preburning and afterburning) and incomplete combustion. Using measurements obtained from the experiment it is determined that incomplete combustion contributes a larger performance loss than the deflagration which occurs within the combustor.</p><p dir="ltr">A total of 17 parametric studies were conducted experimentally to evaluate the response of the RDC specifically to changes in the propellant chemical reaction timescales. Detonation wave arrival times ranged between 10 microseconds and 178 microseconds as a result of testing at ranges of operating pressures, equivalence ratios, and utilizing nine unique propellant combinations. It was shown that the wave arrival time is primarily a function of chemical kinetic timescales and injector mixing processes. A model using the injector momentum ratio and modeled deflagrative preheat times is shown to be able to closely predict experimentally obtained detonation wave arrival times.</p>
4

Synthesis and optical properties of CdSe core and core/shell nanocrystals

van Embden, Joel Leonard January 2008 (has links)
The synthesis of nanocrystals is unique compared to the formation of larger micron-sizesspecies as the final crystal sizes are not much larger than the primary nuclei. As a consequencethe final outcome of a nanocrystal synthesis i.e mean crystal size, concentrationand standard deviation is almost solely determined by the end of the nucleation phase. Directingthe growth of crystals beginning from aggregates of only tens of atoms into maturemonodisperse nanocrystals requires that the governing kinetics are strictly controlled at everymoment of the reaction. To effect this task various different ligands need to be employed,each performing a particular function during both nucleation and growth. (For complete abstract open document)
5

A study of the kinetic interactions of complex metal ion : humic and magnetite ternary systems

Li, Nigel January 2012 (has links)
The sorption of humic acid (HA) and HA size fractions onto magnetite has been studied. There is considerable irreversibility in the interaction of the humic with the magnetite surface, but the presence of Eu3+ ions has no effect on the sorption of humic onto magnetite. The magnitude of the sorption to magnetite increases with HA fraction size for all ionic strengths between 0.01 and 3 mol dm-3. Increasing ionic strength also increases sorption. Asymmetric Flow Field Flow Fractionation analysis of HA sorption to magnetite after 1 day revealed preferential sorption of lower molecular weight material. Eu3+ sorption onto magnetite was studied as a function of Eu concentration, which showed an increase in relative sorption as Eu concentration decreased. The behaviour of Eu3+ in ternary (HA/Eu3+/magnetite) systems is heavily influenced by HA, and from the data there is direct evidence for ternary complex formation. Larger HA size fractions retain more Eu3+ in solution than the smaller fractions. The binding strengths of HA size fractions were determined through ion exchange resin experiments: generally the larger fractions (> 10 kDa) showed stronger binding than the smaller components, but the unfractionated sample showed the strongest binding.First order dissociation rate constants have been determined for the whole HA and HA size fractions. The dissociation rate constants are independent of HA fraction size, but the larger species bind more Eu non-exchangeably. Time series ultrafiltration of Eu3+/whole humic mixtures has shown a shift in the distribution of metal ions to larger size fractions after a few days. Two ternary system kinetic speciation models have been developed to predict the behaviour of HA and Eu3+ in ternary systems. The two differ in their description of the multi-component behaviour of the binary HA-mineral interaction. The first assumes a single HA species and two surface binding sites and was found to perform better overall than the second, which has a single surface sorption site and two HA species in solution. The exchangeable binding strengths for the different HA samples calculated from both models showed similarities to those measured experimentally.
6

Étude de la mise en oeuvre de composites thermostables cyanate-ester pour pièces structurales aéronautiques tièdes / Study of thermostable cyanate-ester composite for warm aircraft structural parts

Zemni, Lilia 14 March 2019 (has links)
Les pièces situées dans des zones chaudes/tièdes (300-400°C) de l'avion sont actuellement en titane (mât moteur) ou en composite à matrice époxy (plenum). Comment pourrait-on diminuer la masse de ces pièces tout en évitant leur dégradation à hautes températures de fonctionnement ? Le projet TACT (Technologie pour Aérostructures composites Tièdes), porté par Nimitech Innovation® (Groupe LAUAK), propose une solution innovante consistant à mettre en oeuvre par voie RTM des pièces structurales tièdes à base de renfort en fibres de carbone (FC) et de matrice Cyanate ester (CE). Le choix de la matrice thermodurcissable CE est justifié par son caractère thermostable, c'est-à-dire sa capacité d'opérer en continu à de hautes températures de fonctionnement (avec une température de transition vitreuse Tg>300°C). Par ailleurs, elle possède la facilité de mise en oeuvre des époxydes du fait qu'elle s'adapte généralement bien aux paramètres du procédé RTM. Toutefois, l'exothermie élevée de la matrice CE lors de la réticulation implique un gradient de température dans la pièce composite et peut ainsi engendrer des problèmes de surchauffe. Les travaux scientifiques menés dans le cadre de cette thèse se focalisent sur la problématique de surchauffe de la résine pendant le processus de polymérisation très exothermique dans le moule RTM. L'objectif serait ainsi de maîtriser le cycle de cuisson du composite afin d'éviter tout problème d'emballement ou de dégradation pendant la réticulation de la matrice. Dès lors, la thèse s'organise de la manière suivante : dans un premier temps, le comportement thermocinétique de la matrice CE (pure et catalysée) est analysé pendant l'étape de réticulation, et ceci dans l'optique de contribuer à l'optimisation de cycle de cuisson lors de la mise en oeuvre du composite FC/CE par procédé RTM. Ensuite, les propriétés thermiques (capacité calorifique, conductivité, diffusivité) en fonction du degré d'avancement de la résine CE sont menés afin d'évaluer le gradient thermique régi par l'équation de la chaleur permettant de maîtriser la cuisson de la résine dans l'épaisseur. Par ailleurs, la vitrification de la matrice CE est étudiée par le suivi de la température de transition vitreuse Tg en fonction de la température et du taux d'avancement à l'aide de différents techniques de mesure (DSC, DMA, TMA). Enfin, une modélisation de la vitrification à l'aide du modèle Di-Benedetto permettra l'estimation de la température de la transition vitreuse Tg ∞ pour le réseau tridimentionnel entièrement réticulé. / Aeronautical parts which operate in high temperature area (300-400°C) are currently made of titanium (aircraft pylon) or composite materials based on epoxy matrix (plenum). In which extent the weight of these pieces could be reduced as well as avoiding their degradation when operating at these working temperature ranges? TACT project (Technologie pour Aérostructures composites Tièdes), overseen by Nimitech Innovation® (Groupe LAUAK), suggests an innovative solution based on the development of high performance composites parts reinforced by carbon fibers (CF) and cyanate ester matrix (CE) through RTM process. The CE resin belongs to the class of high-performance thermosetting polymers and is mainly chosen in this project due to its thermal stability when operating at high temperatures (with a glass transition Tg>300°C), as well as epoxy-like processability. However, the cross-linking reaction exhibits highly exothermic process, resulting in non-linear increase in internal temperature, which may cause a temperature overshoot. The scientific work carried out within this thesis focuses on the problem of overheating of the resin during the highly exothermic polymerization process in the RTM mold. The objective would thus be to control the curing cycle of the composite in order to avoid problems of runaway or degradation during the crosslinking of the matrix. Hence, the thesis is organized as follows: firstly, thermokinetic behavior of CE resin is analyzed during the crosslinking process in order to optimize the curing cycle. Secondly, thermal properties (heat capacity, conductivity, diffusivity) are identified as a function of the conversion degree in order to evaluate the thermal gradient covered by the heat equation making it possible to control the curing along the thickness of the composite. Moreover, the vitrification of the cyanate ester matrix is studied by monitoring the glass transition temperature Tg as a function of the temperature and conversion degree using different methods (DSC, DMA, TMA). Finally, Di-Benedetto model, a vitrification model, is chosen in order to identify the glass transition temperature Tg∞ of a full crosslinked resin.

Page generated in 0.0839 seconds