• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian M/EEG source localization with possible joint skull conductivity estimation / Méthodes bayésiennes pour la localisation des sources M/EEG et estimation de la conductivité du crâne

Costa, Facundo hernan 02 March 2017 (has links)
Les techniques M/EEG permettent de déterminer les changements de l'activité du cerveau, utiles au diagnostic de pathologies cérébrales, telle que l'épilepsie. Ces techniques consistent à mesurer les potentiels électriques sur le scalp et le champ magnétique autour de la tête. Ces mesures sont reliées à l'activité électrique du cerveau par un modèle linéaire dépendant d'une matrice de mélange liée à un modèle physique. La localisation des sources, ou dipôles, des mesures M/EEG consiste à inverser le modèle physique. Cependant, la non-unicité de la solution (due à la loi fondamentale de physique) et le faible nombre de dipôles rendent le problème inverse mal-posé. Sa résolution requiert une forme de régularisation pour restreindre l'espace de recherche. La littérature compte un nombre important de travaux traitant de ce problème, notamment avec des approches variationnelles. Cette thèse développe des méthodes Bayésiennes pour résoudre des problèmes inverses, avec application au traitement des signaux M/EEG. L'idée principale sous-jacente à ce travail est de contraindre les sources à être parcimonieuses. Cette hypothèse est valide dans plusieurs applications, en particulier pour certaines formes d'épilepsie. Nous développons différents modèles Bayésiens hiérarchiques pour considérer la parcimonie des sources. En théorie, contraindre la parcimonie des sources équivaut à minimiser une fonction de coût pénalisée par la norme l0 de leurs positions. Cependant, la régularisation l0 générant des problèmes NP-complets, l'approximation de cette pseudo-norme par la norme l1 est souvent adoptée. Notre première contribution consiste à combiner les deux normes dans un cadre Bayésien, à l'aide d'une loi a priori Bernoulli-Laplace. Un algorithme Monte Carlo par chaîne de Markov est utilisé pour estimer conjointement les paramètres du modèle et les positions et intensités des sources. La comparaison des résultats, selon plusieurs scenarii, avec ceux obtenus par sLoreta et la régularisation par la norme l1 montre des performances intéressantes, mais au détriment d'un coût de calcul relativement élevé. Notre modèle Bernoulli Laplace résout le problème de localisation des sources pour un instant donné. Cependant, il est admis que l'activité cérébrale a une certaine structure spatio-temporelle. L'exploitation de la dimension temporelle est par conséquent intéressante pour contraindre d'avantage le problème. Notre seconde contribution consiste à formuler un modèle de parcimonie structurée pour exploiter ce phénomène biophysique. Précisément, une distribution Bernoulli-Laplacienne multivariée est proposée comme loi a priori pour les dipôles. Une variable latente est introduite pour traiter la loi a posteriori complexe résultante et un algorithme d'échantillonnage original de type Metropolis Hastings est développé. Les résultats montrent que la technique d'échantillonnage proposée améliore significativement la convergence de la méthode MCMC. Une analyse comparative des résultats a été réalisée entre la méthode proposée, une régularisation par la norme mixte l21, et l'algorithme MSP (Multiple Sparse Priors). De nombreuses expérimentations ont été faites avec des données synthétiques et des données réelles. Les résultats montrent que notre méthode a plusieurs avantages, notamment une meilleure localisation des dipôles. Nos deux précédents algorithmes considèrent que le modèle physique est entièrement connu. Cependant, cela est rarement le cas dans les applications pratiques. Au contraire, la matrice du modèle physique est le résultat de méthodes d'approximation qui conduisent à des incertitudes significatives. / M/EEG mechanisms allow determining changes in the brain activity, which is useful in diagnosing brain disorders such as epilepsy. They consist of measuring the electric potential at the scalp and the magnetic field around the head. The measurements are related to the underlying brain activity by a linear model that depends on the lead-field matrix. Localizing the sources, or dipoles, of M/EEG measurements consists of inverting this linear model. However, the non-uniqueness of the solution (due to the fundamental law of physics) and the low number of dipoles make the inverse problem ill-posed. Solving such problem requires some sort of regularization to reduce the search space. The literature abounds of methods and techniques to solve this problem, especially with variational approaches. This thesis develops Bayesian methods to solve ill-posed inverse problems, with application to M/EEG. The main idea underlying this work is to constrain sources to be sparse. This hypothesis is valid in many applications such as certain types of epilepsy. We develop different hierarchical models to account for the sparsity of the sources. Theoretically, enforcing sparsity is equivalent to minimizing a cost function penalized by an l0 pseudo norm of the solution. However, since the l0 regularization leads to NP-hard problems, the l1 approximation is usually preferred. Our first contribution consists of combining the two norms in a Bayesian framework, using a Bernoulli-Laplace prior. A Markov chain Monte Carlo (MCMC) algorithm is used to estimate the parameters of the model jointly with the source location and intensity. Comparing the results, in several scenarios, with those obtained with sLoreta and the weighted l1 norm regularization shows interesting performance, at the price of a higher computational complexity. Our Bernoulli-Laplace model solves the source localization problem at one instant of time. However, it is biophysically well-known that the brain activity follows spatiotemporal patterns. Exploiting the temporal dimension is therefore interesting to further constrain the problem. Our second contribution consists of formulating a structured sparsity model to exploit this biophysical phenomenon. Precisely, a multivariate Bernoulli-Laplacian distribution is proposed as an a priori distribution for the dipole locations. A latent variable is introduced to handle the resulting complex posterior and an original Metropolis-Hastings sampling algorithm is developed. The results show that the proposed sampling technique improves significantly the convergence. A comparative analysis of the results is performed between the proposed model, an l21 mixed norm regularization and the Multiple Sparse Priors (MSP) algorithm. Various experiments are conducted with synthetic and real data. Results show that our model has several advantages including a better recovery of the dipole locations. The previous two algorithms consider a fully known leadfield matrix. However, this is seldom the case in practical applications. Instead, this matrix is the result of approximation methods that lead to significant uncertainties. Our third contribution consists of handling the uncertainty of the lead-field matrix. The proposed method consists in expressing this matrix as a function of the skull conductivity using a polynomial matrix interpolation technique. The conductivity is considered as the main source of uncertainty of the lead-field matrix. Our multivariate Bernoulli-Laplacian model is then extended to estimate the skull conductivity jointly with the brain activity. The resulting model is compared to other methods including the techniques of Vallaghé et al and Guttierez et al. Our method provides results of better quality without requiring knowledge of the active dipole positions and is not limited to a single dipole activation.
2

Online stochastic algorithms / Algorithmes stochastiques en ligne

Li, Le 27 November 2018 (has links)
Cette thèse travaille principalement sur trois sujets. Le premier concentre sur le clustering en ligne dans lequel nous présentons un nouvel algorithme stochastique adaptatif pour regrouper des ensembles de données en ligne. Cet algorithme repose sur l'approche quasi-bayésienne, avec une estimation dynamique (i.e., dépendant du temps) du nombre de clusters. Nous prouvons que cet algorithme atteint une borne de regret de l'ordre et que cette borne est asymptotiquement minimax sous la contrainte sur le nombre de clusters. Nous proposons aussi une implémentation par RJMCMC. Le deuxième sujet est lié à l'apprentissage séquentiel des courbes principales qui cherche à résumer une séquence des données par une courbe continue. Pour ce faire, nous présentons une procédure basée sur une approche maximum a posteriori pour le quasi-posteriori de Gibbs. Nous montrons que la borne de regret de cet algorithme et celui de sa version adaptative est sous-linéaire en l'horizon temporel T. En outre, nous proposons une implémentation par un algorithme glouton local qui intègre des éléments de sleeping experts et de bandit à plusieurs bras. Le troisième concerne les travaux qui visent à accomplir des tâches pratiques au sein d'iAdvize, l'entreprise qui soutient cette thèse. Il inclut l'analyse des sentiments pour les messages textuels et l'implémentation de chatbot dans lesquels la première est réalisé par les méthodes classiques dans la fouille de textes et les statistiques et la seconde repose sur le traitement du langage naturel et les réseaux de neurones artificiels. / This thesis works mainly on three subjects. The first one is online clustering in which we introduce a new and adaptive stochastic algorithm to cluster online dataset. It relies on a quasi-Bayesian approach, with a dynamic (i.e., time-dependent) estimation of the (unknown and changing) number of clusters. We prove that this algorithm has a regret bound of the order of and is asymptotically minimax under the constraint on the number of clusters. A RJMCMC-flavored implementation is also proposed. The second subject is related to the sequential learning of principal curves which seeks to represent a sequence of data by a continuous polygonal curve. To this aim, we introduce a procedure based on the MAP of Gibbs-posterior that can give polygonal lines whose number of segments can be chosen automatically. We also show that our procedure is supported by regret bounds with sublinear remainder terms. In addition, a greedy local search implementation that incorporates both sleeping experts and multi-armed bandit ingredients is presented. The third one concerns about the work which aims to fulfilling practical tasks within iAdvize, the company which supports this thesis. It includes sentiment analysis for textual messages by using methods in both text mining and statistics, and implementation of chatbot based on nature language processing and neural networks.
3

Raisonnement incertain pour les règles métier / Uncertain reasoning for business rules

Agli, Hamza 20 July 2017 (has links)
Nous étudions dans cette thèse la gestion des incertitudes au sein des systèmes à base de règles métier orientés objet (Object-Oriented Business Rules Management Systems ou OO-BRMS) et nous nous intersessions à des approches probabilistes. Afin de faciliter la modélisation des distributions de probabilités dans ces systèmes, nous proposons d'utiliser les modèles probabilistes relationnels (Probabilistic Relational Models ou PRM), qui sont une extension orientée objet des réseaux bayésiens. Lors de l'exploitation des OO-BRMS, les requêtes adressées aux PRM sont nombreuses et les réponses doivent être calculées rapidement. Pour cela, nous proposons, dans la première partie de cette thèse, un nouvel algorithme tirant parti de deux spécificités des OO-BRMS. Premièrement, les requêtes de ces derniers s'adressent seulement à une sous partie de leur base. Par conséquent, les probabilités à calculer ne concernent que des sous-ensembles de toutes les variables aléatoires des PRM. Deuxièmement, les requêtes successives diffèrent peu les unes des autres. Notre algorithme exploite ces deux spécificités afin d'optimiser les calculs. Nous prouvons mathématiquement que notre approche fournit des résultats exacts et montrons son efficacité par des résultats expérimentaux. Lors de la deuxième partie, nous établissons des principes généraux permettant d'étendre les OO-BRMS pour garantir une meilleure inter-operabilité avec les PRM. Nous appliquons ensuite notre approche au cas d'IBM Operational Decisions Manager (ODM) dans le cadre d'un prototype développé, que nous décrivons de manière générale. Enfin, nous présentons des techniques avancées permettant de compiler des expressions du langage technique d'ODM pour faciliter leur exploitation par le moteur probabiliste des PRM. / In this thesis, we address the issue of uncertainty in Object-Oriented Business Rules Management Systems (OO-BRMSs). To achieve this aim, we rely on Probabilistic Relational Models (PRMs). These are an object-oriented extension of Bayesian Networks that can be exploited to efficiently model probability distributions in OO-BRMSs. It turns out that queries in OO-BRMS are numerous and we need to request the PRM very frequently. The PRM should then provide a rapid answer. For this reason, we propose, in the first part of this thesis, a new algorithm that respects two specifities of OO-BRMSs and optimizes the probabilistic inference accordingly. First, OO-BRMSs queries affect only a subset of their base, hence, the probabilities of interest concern only a subset of the PRMs random variables. Second, successive requests differ only slightly from each other. We prove theoretically the correctness of the proposed algorithm and we highlight its efficiency through experimental tests. During the second part, we establish some principles for probabilistic OO-BRMSs and we describe an approach to couple them with PRMs. Then, we apply the approach to IBM Operational Decision Manager (ODM), one of the state-of-the-art OO-BRMSs, and we provide a general overview of the resulted prototype. Finally, we discuss advanced techniques to compile elements of ODM technical language into instructions that are exploitable by the PRM probabilistic engine.

Page generated in 0.0262 seconds