Spelling suggestions: "subject:"bayes"" "subject:"hayes""
291 |
Analysis and application of empirical Bayes methods in data mining / Duomenų tyrybos empirinių Bajeso metodų tyrimas ir taikymasJakimauskas, Gintautas 23 April 2014 (has links)
The research object is data mining empirical Bayes methods and algorithms applied in the analysis of large populations of large dimensions. The aim and objectives of the research are to create methods and algorithms for testing nonparametric hypotheses for large populations and for estimating the parameters of data models. The following problems are solved to reach these objectives: 1. To create an efficient data partitioning algorithm of large dimensional data. 2. To apply the data partitioning algorithm of large dimensional data in testing nonparametric hypotheses. 3. To apply the empirical Bayes method in testing the independence of components of large dimensional data vectors. 4. To develop an algorithm for estimating probabilities of rare events in large populations, using the empirical Bayes method and comparing Poisson-gamma and Poisson-Gaussian mathematical models, by selecting an optimal model and a respective empirical Bayes estimator. 5. To create an algorithm for logistic regression of rare events using the empirical Bayes method. The results obtained enables us to perform very fast and efficient partitioning of large dimensional data; testing the independence of selected components of large dimensional data; selecting the optimal model in the estimation of probabilities of rare events, using the Poisson-gamma and Poisson-Gaussian mathematical models and empirical Bayes estimators. The nonsingularity condition in the case of the Poisson-gamma model is presented. / Darbo tyrimų objektas yra duomenų tyrybos empiriniai Bajeso metodai ir algoritmai, taikomi didelio matavimų skaičiaus didelių populiacijų duomenų analizei. Darbo tyrimų tikslas yra sudaryti metodus ir algoritmus didelių populiacijų neparametrinių hipotezių tikrinimui ir duomenų modelių parametrų vertinimui. Šiam tikslui pasiekti yra sprendžiami tokie uždaviniai: 1. Sudaryti didelio matavimo duomenų skaidymo algoritmą. 2. Pritaikyti didelio matavimo duomenų skaidymo algoritmą neparametrinėms hipotezėms tikrinti. 3. Pritaikyti empirinį Bajeso metodą daugiamačių duomenų komponenčių nepriklausomumo hipotezei tikrinti su skirtingais matematiniais modeliais, nustatant optimalų modelį ir atitinkamą empirinį Bajeso įvertinį. 4. Sudaryti didelių populiacijų retų įvykių dažnių vertinimo algoritmą panaudojant empirinį Bajeso metodą palyginant Puasono-gama ir Puasono-Gauso matematinius modelius. 5. Sudaryti retų įvykių logistinės regresijos algoritmą panaudojant empirinį Bajeso metodą. Darbo metu gauti nauji rezultatai įgalina atlikti didelio matavimo duomenų skaidymą; atlikti didelio matavimo nekoreliuotų duomenų pasirinktų komponenčių nepriklausomumo tikrinimą; parinkti didelių populiacijų retų įvykių optimalų modelį ir atitinkamą empirinį Bajeso įvertinį. Pateikta nesinguliarumo sąlyga Puasono-gama modelio atveju.
|
292 |
Myoelectric Signal Processing for Prosthesis ControlHofmann, David 05 February 2014 (has links)
No description available.
|
293 |
Individual level or segmentation based market simulation?Natter, Martin, Feurstein, Markus January 1999 (has links) (PDF)
In many studies, choice based conjoint analysis is used to build a market simulator to develop marketing strategies; i.e., shares-of-preference are taken as market share forecasts. However, conjoint data are collected in interview situations, which may differ considerably from real shopping behavior. In this paper, we test the internal and external validity of four commercial choice based conjoint pricing studies including a total of 43 brands. We use conjoint and sales data to assess the relative performance of two modern approaches to estimate conjoint parameters: the segmentation based Latent Class model and the individual level Hierarchical Bayes approach. Our paper confirms previous results of the internal superiority of the Hierarchical Bayes approach. The main result of our investigation is that internal validity does not predict external validity and that Latent Class shows the same real world performance as Hierarchical Bayes. Both models show an average error of 4.2% in market share level prediction and a correlation of 69% between conjoint forecasts and real market shares. (author's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
294 |
Bayesian Model Discrimination and Bayes Factors for Normal Linear State Space ModelsFrühwirth-Schnatter, Sylvia January 1993 (has links) (PDF)
It is suggested to discriminate between different state space models for a given time series by means of a Bayesian approach which chooses the model that minimizes the expected loss. Practical implementation of this procedures requires a fully Bayesian analysis for both the state vector and the unknown hyperparameters which is carried out by Markov chain Monte Carlo methods. Application to some non-standard situations such as testing hypotheses on the boundary of the parameter space, discriminating non-nested models and discrimination of more than two models is discussed in detail. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
|
295 |
DEFT guessing: using inductive transfer to improve rule evaluation from limited dataReid, Mark Darren, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Algorithms that learn sets of rules describing a concept from its examples have been widely studied in machine learning and have been applied to problems in medicine, molecular biology, planning and linguistics. Many of these algorithms used a separate-and-conquer strategy, repeatedly searching for rules that explain different parts of the example set. When examples are scarce, however, it is difficult for these algorithms to evaluate the relative quality of two or more rules which fit the examples equally well. This dissertation proposes, implements and examines a general technique for modifying rule evaluation in order to improve learning performance in these situations. This approach, called Description-based Evaluation Function Transfer (DEFT), adjusts the way rules are evaluated on a target concept by taking into account the performance of similar rules on a related support task that is supplied by a domain expert. Central to this approach is a novel theory of task similarity that is defined in terms of syntactic properties of rules, called descriptions, which define what it means for rules to be similar. Each description is associated with a prior distribution over classification probabilities derived from the support examples and a rule's evaluation on a target task is combined with the relevant prior using Bayes' rule. Given some natural conditions regarding the similarity of the target and support task, it is shown that modifying rule evaluation in this way is guaranteed to improve estimates of the true classification probabilities. Algorithms to efficiently implement Deft are described, analysed and used to measure the effect these improvements have on the quality of induced theories. Empirical studies of this implementation were carried out on two artificial and two real-world domains. The results show that the inductive transfer of evaluation bias based on rule similarity is an effective and practical way to improve learning when training examples are limited.
|
296 |
Dying to count : mortality surveillance methods in resource-poor settings /Fottrell, Edward F, January 2008 (has links)
Diss. (sammanfattning) Umeå : Univ., 2008. / Härtill 5 uppsatser.
|
297 |
Operational risk management : implementing a Bayesian network for foreign exchange and money market settlement /Adusei-Poku, Kwabena. January 2005 (has links) (PDF)
Univ., Diss.--Göttingen, 2005.
|
298 |
Bayesian genome-wide QTL mapping for multiple traitsBanerjee, Samprit. January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed on June 23, 2009). Includes bibliographical references.
|
299 |
Ecological studies using supplemental case-control data /Haneuse, Sebastian J. P. A., January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 164-170).
|
300 |
Intentionsbasierte maschinelle Interpretation von BenutzeraktionenHofmann, Marc. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--München.
|
Page generated in 0.0406 seconds