Spelling suggestions: "subject:"bayessche netze"" "subject:"bayessche metze""
1 |
Probabilistic Estimation of Unobserved Process EventsRogge-Solti, Andreas January 2014 (has links)
Organizations try to gain competitive advantages, and to increase customer satisfaction. To ensure the quality and efficiency of their business processes, they perform business process management. An important part of process management that happens on the daily operational level is process controlling. A prerequisite of controlling is process monitoring, i.e., keeping track of the performed activities in running process instances. Only by process monitoring can business analysts detect delays and react to deviations from the expected or guaranteed performance of a process instance. To enable monitoring, process events need to be collected from the process environment.
When a business process is orchestrated by a process execution engine, monitoring is available for all orchestrated process activities. Many business processes, however, do not lend themselves to automatic orchestration, e.g., because of required freedom of action. This situation is often encountered in hospitals, where most business processes are manually enacted. Hence, in practice it is often inefficient or infeasible to document and monitor every process activity. Additionally, manual process execution and documentation is prone to errors, e.g., documentation of activities can be forgotten. Thus, organizations face the challenge of process events that occur, but are not observed by the monitoring environment. These unobserved process events can serve as basis for operational process decisions, even without exact knowledge of when they happened or when they will happen. An exemplary decision is whether to invest more resources to manage timely completion of a case, anticipating that the process end event will occur too late.
This thesis offers means to reason about unobserved process events in a probabilistic way. We address decisive questions of process managers (e.g., "when will the case be finished?", or "when did we perform the activity that we forgot to document?") in this thesis. As main contribution, we introduce an advanced probabilistic model to business process management that is based on a stochastic variant of Petri nets. We present a holistic approach to use the model effectively along the business process lifecycle. Therefore, we provide techniques to discover such models from historical observations, to predict the termination time of processes, and to ensure quality by missing data management. We propose mechanisms to optimize configuration for monitoring and prediction, i.e., to offer guidance in selecting important activities to monitor. An implementation is provided as a proof of concept. For evaluation, we compare the accuracy of the approach with that of state-of-the-art approaches using real process data of a hospital. Additionally, we show its more general applicability in other domains by applying the approach on process data from logistics and finance. / Unternehmen versuchen Wettbewerbsvorteile zu gewinnen und die Kundenzufriedenheit zu erhöhen. Um die Qualität und die Effizienz ihrer Prozesse zu gewährleisten, wenden Unternehmen Geschäftsprozessmanagement an. Hierbei spielt die Prozesskontrolle im täglichen Betrieb eine wichtige Rolle. Prozesskontrolle wird durch Prozessmonitoring ermöglicht, d.h. durch die Überwachung des Prozessfortschritts laufender Prozessinstanzen. So können Verzögerungen entdeckt und es kann entsprechend reagiert werden, um Prozesse wie erwartet und termingerecht beenden zu können. Um Prozessmonitoring zu ermöglichen, müssen prozessrelevante Ereignisse aus der Prozessumgebung gesammelt und ausgewertet werden.
Sofern eine Prozessausführungsengine die Orchestrierung von Geschäftsprozessen übernimmt, kann jede Prozessaktivität überwacht werden. Aber viele Geschäftsprozesse eignen sich nicht für automatisierte Orchestrierung, da sie z.B. besonders viel Handlungsfreiheit erfordern. Dies ist in Krankenhäusern der Fall, in denen Geschäftsprozesse oft manuell durchgeführt werden. Daher ist es meist umständlich oder unmöglich, jeden Prozessfortschritt zu erfassen. Zudem ist händische Prozessausführung und -dokumentation fehleranfällig, so wird z.B. manchmal vergessen zu dokumentieren. Eine Herausforderung für Unternehmen ist, dass manche Prozessereignisse nicht im Prozessmonitoring erfasst werden. Solch unbeobachtete Prozessereignisse können jedoch als Entscheidungsgrundlage dienen, selbst wenn kein exaktes Wissen über den Zeitpunkt ihres Auftretens vorliegt. Zum Beispiel ist bei der Prozesskontrolle zu entscheiden, ob zusätzliche Ressourcen eingesetzt werden sollen, wenn eine Verspätung angenommen wird.
Diese Arbeit stellt einen probabilistischen Ansatz für den Umgang mit unbeobachteten Prozessereignissen vor. Dabei werden entscheidende Fragen von Prozessmanagern beantwortet (z.B. "Wann werden wir den Fall beenden?", oder "Wann wurde die Aktivität ausgeführt, die nicht dokumentiert wurde?"). Der Hauptbeitrag der Arbeit ist die Einführung eines erweiterten probabilistischen Modells ins Geschäftsprozessmanagement, das auf stochastischen Petri Netzen basiert. Dabei wird ein ganzheitlicher Ansatz zur Unterstützung der einzelnen Phasen des Geschäftsprozesslebenszyklus verfolgt. Es werden Techniken zum Lernen des probabilistischen Modells, zum Vorhersagen des Zeitpunkts des Prozessendes, zum Qualitätsmanagement von Dokumentationen durch Erkennung fehlender Einträge, und zur Optimierung von Monitoringkonfigurationen bereitgestellt. Letztere dient zur Auswahl von relevanten Stellen im Prozess, die beobachtet werden sollten. Diese Techniken wurden in einer quelloffenen prototypischen Anwendung implementiert. Zur Evaluierung wird der Ansatz mit existierenden Alternativen an echten Prozessdaten eines Krankenhauses gemessen. Die generelle Anwendbarkeit in weiteren Domänen wird examplarisch an Prozessdaten aus der Logistik und dem Finanzwesen gezeigt.
|
2 |
Kontext-differenzierte Modellierung des Fahrverhaltens auf Autobahnen mit streckenbezogener VerkehrsbeeinflussungGrimm, Jan 14 June 2022 (has links)
Auf vielen hochbelasteten Autobahnabschnitten kommen Streckenbeeinflussungsanlagen (SBA) zum Einsatz, um die Verkehrssicherheit und den Verkehrsfluss zu verbessern. Hierbei werden Maßnahmen wie Geschwindigkeitsbeschränkungen und Warnungen weitestgehend automatisiert aufgrund der vorherrschenden Verkehrs- und Wetterbedingungen abgeleitet und über Wechselverkehrszeichen an die Verkehrsteilnehmer ausgegeben. Diese bewährte Form der Verkehrsbeeinflussung trifft auf sich verändernde Randbedingungen: Durch zunehmende Fahrzeugkonnektivität und -automatisierung sind signifikante Veränderungen im Fahrverhalten und somit auch in den Wirkungen einer SBA zu erwarten. Auch unabhängig davon stellt in der Praxis die Qualitätssicherung der komplexen automatisierten Steuerung einer SBA und die hierbei erforderliche Bewertung von Verbesserungsmaßnahmen eine große Herausforderung dar.
Die mikroskopische Verkehrsflusssimulation bietet Potenziale, um Wirkungen kollektiver Verkehrsbeeinflussung zu untersuchen und Veränderungen am Verkehrssystem a-priori zu bewerten. Jedoch wird mikroskopische Verkehrsflusssimulation bislang kaum in Untersuchungen zu SBA eingesetzt. Dies ist unter anderem auf die Vielfalt zu berücksichtigender Situationen und Einflüsse auf das Fahrverhalten zurückzuführen: Anzeigezustände der SBA können sich in kurzen Zyklen ändern und zugrunde liegende Beeinflussungsstrategien sich überlagern; zugleich wirken sich auch die Verkehrs- und Wetterbedingungen auf das Fahrverhalten aus. Bislang ist kein Modellierungsansatz bekannt, um derart vielfältige Einflüsse auf das Fahrverhalten in der mikroskopischen Verkehrsflusssimulation zu berücksichtigen.
Vor diesem Hintergrund wurde im Rahmen dieser Arbeit ein neuartiges Verfahren entwickelt, das erstmals eine differenzierte Modellierung des Fahrverhaltens in der mikroskopischen Verkehrsflusssimulation in einem sich dynamisch verändernden Situationskontext ermöglicht. Hierbei werden ausgewählte Parameter fahrzeugbezogener Verhaltensmodelle während der Simulation nachgeführt. Verschiedene Einflussfaktoren, Verhaltenskenngrößen und Modellparameter wurden dabei als Zustandsknoten eines hybriden Bayesschen Netzes modelliert, das anhand empirischer Daten mehrerer realer SBA sowie verschiedener simulativer Untersuchungen kalibriert wurde. Die Eignung des Verfahrens konnte im Rahmen einer Validierung bestätigt werden. In einem Forschungsprojekt im Auftrag der Bundesanstalt für Straßenwesen (BASt) wurde das Verfahren pilothaft zur Untersuchung der Einflüsse automatisierten Fahrens auf SBA eingesetzt.
|
Page generated in 0.0504 seconds