• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Beam Loss Monitoring system for CTF-3 TBL

Branger, Erik January 2013 (has links)
The Compact Linear Collider (CLIC) study is a feasibility study for a new linear accelerator that aims to reach a center-of-mass collision energy of 3 TeV. To keep the length of the accelerator reasonable, a high accelerating gradient of 100 MeV/m is provided by a novel acceleration scheme, where power is extracted from a high-intensity drive beam to accelerate a high-energy main beam. The Test Beam Line (TBL) at the CLIC Test Facility 3 (CTF-3) is an experimental beamline constructed to test the technology for deceleration and power extraction of the drive beam. A Beam Loss Monitoring (BLM) system is currently under development to investigate the amount of beam loss at the TBL, with the aim of providing information about the stability of the beam under deceleration. These detectors are placed outside of the accelerator, and measure the secondary particle shower created by particles lost in the TBL. The amount of particles that can be detected by the BLM detectors was simulated using the Monte Carlo transport code FLUKA. Several different loss scenarios were simulated, in order to calculate the intensity and composition of the secondary particle shower at the detector locations. Various approximations for the sensitivity of the detectors were considered, and were combined with the simulated intensity of the shower to estimate the detector output signal per lost particle. These values were compared with data taken by the TBL BLM system, to estimate the amount of beam lost while the TBL is running.
2

Identification of LHC beam loss mechanism : a deterministic treatment of loss patterns / Identification des mécanismes de perte de faisceau au LHC : un traitement déterministe des structures de pertes

Marsili, Aurélien 21 November 2012 (has links)
Le Large Hadron Collider (LHC) du CERN, avec un périmètre de 26,7 km, est la plus grande machine jamais construite et l'accélérateur de particules le plus puissant, à la fois par l'énergie des faisceaux et par leur intensité. Les aimants principaux sont supraconducteurs, et maintiennent les particules en deux faisceaux circulants à contre-sens, qui entre en collision en quatre points d'interaction différents. Ces aimants doivent être protégés contre les pertes de faisceau : ils peuvent subir une transition de phase et redevenir résistifs, et peuvent être endommagés. Pour éviter cela, des moniteurs de pertes de faisceau, appelés Beam Loss Monitors (BLM) ont été installés. Si les seuils de pertes maximum autorisées sont dépassés, les faisceaux sont rapidement enlevés de la machine. Les détecteurs du système BLM sont en majorité des chambres d'ionisation situées à l'extérieur des cryostats. Au total, plus de 3500 chambres d'ionisation sont installées. Les difficultés supplémentaires comprennent la grande amplitude dynamique des pertes : les courants mesurés s'échelonnent de 2 pA jusqu'à 1 mA. Le sujet de cette thèse est d'étudier les structures de pertes et de trouver l'origine des pertes de façon déterministe, en comparant des profils de pertes mesurés à des scénarios de pertes connus. Ceci a été effectué par le biais d'une étude de cas : différentes techniques ont été utilisées sur un ensemble restreint de scénarios de pertes, constituant une preuve de concept de la possibilité d'extraire de l'information d'un profil de pertes. Trouver l'origine des pertes doit pouvoir permettre d'agir en conséquence, ce qui justifie l'intérêt du travail doctoral. Ce travail de thèse se focalise sur la compréhension de la théorie et la mise en place de la décomposition d'un profil de pertes mesuré en une combinaison linéaire des scénarios de référence; sur l'évaluation de l'erreur sur la recomposition et sa validité. Un ensemble de scénarios de pertes connus (e.g. l'augmentation de la taille du faisceau dans les plans vertical et horizontal ou la différence d'énergie lors de mesures de profils de pertes) ont été réunis, permettant l'étude et la création de vecteurs de référence. Une technique d'algèbre linéaire (inversion de matrice), l'algorithme numérique de décomposition en valeurs singulières (SVD), a été utilisé pour effectuer cette décomposition vectorielle. En outre, un code spécifique a été développé pour la projection vectorielle sur une base non-orthogonale d'un sous-espace vectoriel. Ceci a été mis en place avec les données du LHC. Ensuite, les outils de décomposition vectorielle ont été systématiquement utilisés pour étudier l'évolution temporelle des pertes : d'abord par la variation d'une seconde à l'autre, puis par différentes comparaisons avec un profil de pertes par défaut calculé pour l'occasion. Puis, les résultats des décompositions ont été calculés pour les pertes à chaque seconde des périodes de ''faisceaux stables'' de l'année 2011, pour l'étude de la distribution spatiale des pertes. Les résultats obtenus ont été comparés avec les mesures d'autres instruments de faisceau, pour permettre différentes validations. En conclusion, l'intérêt de la décomposition vectorielle est présenté. Ensuite, l'annexe A, décrit le code développé pour permettre l’accès aux données des BLMs, pour les représenter de façon utilisable, et pour les enregistrer. Ceci inclus la connexion à différentes bases de données. L'instrument utilise des objets ROOT pour envoyer des requêtes SQL aux bases de données ainsi que par une interface Java, et est codé en Python. Un court glossaire des acronymes utilisés dans cette thèse est disponible à la fin du document, avant la bibliographie. / CERN's Large Hadron Collider (LHC) is the largest machine ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, keeping the particles into two counter circulating beams, which collide in four interaction points. CERN and the LHC will be described in chap. 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets will become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3500 ionisation chambers are installed. Further challenges include the high dynamical range of losses (chamber currents ranging between 2 pA and 1 mA). The BLM system will be further described in chap. 2. The subject of this thesis is to study the loss patterns and find the origin of the losses in a deterministic way, by comparing measured losses to well understood loss scenarios. This is done through a case study: different techniques were used on a restrained set of loss scenarios, as a proof of concept of the possibility to extract information from a loss profile. Finding the origin of the losses should allow acting in response. A justification of the doctoral work will be given at the end of chap. 2. Then, this thesis will focus on the theoretical understanding and the implementation of the decomposition of a measured loss profile as a linear combination of the reference scenarios; and the evaluation of the error on the recomposition and its correctness. The principles of vector decomposition are developed in chap. 3. An ensemble of well controlled loss scenarios (such as vertical and horizontal blow-up of the beams or momentum offset during collimator loss maps) has been gathered, in order to allow the study and creation of reference vectors. To achieve the Vector Decomposition, linear algebra (matrix inversion) is used with the numeric algorithm for the Singular Value Decomposition. Additionally, a specific code for vector projection on a non-orthogonal basis of a hyperplane was developed. The implementation of the vector decomposition on the LHC data is described in chap. 4. After this, the use of the decomposition tools systematically on the time evolution of the losses will be described: first as a study of the variations second by second, then by comparison to a calculated default loss profile. The different ways to evaluate the variation are studied, and are presented in chap. 5. The next chapter (6) describes the gathering of decomposition results applied to beam losses of 2011. The vector decomposition is applied on every second of the ``stable beans'' periods, as a study of the spatial distribution of the loss. Several comparisons of the results given by the decompositions with measurements from other LHC instruments allowed different validations. Eventually, a global conclusion on the interest of the vector decomposition is given. Then, the extra chapter in Appendix A describes the code which was developed to access the BLM data, to represent them in a meaningful way, and to store them. This included connecting to different databases. The whole instrument uses ROOT objects to send SQL queries to the databases, as well as java API, and is coded in Python. A short glossary of the acronyms used here can be found at the end, before the bibliography.
3

Identification of LHC beam loss mechanism : a deterministic treatment of loss patterns

Marsili, Aurélien 21 November 2012 (has links) (PDF)
CERN's Large Hadron Collider (LHC) is the largest machine ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, keeping the particles into two counter circulating beams, which collide in four interaction points. CERN and the LHC will be described in chap. 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets will become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3500 ionisation chambers are installed. Further challenges include the high dynamical range of losses (chamber currents ranging between 2 pA and 1 mA). The BLM system will be further described in chap. 2. The subject of this thesis is to study the loss patterns and find the origin of the losses in a deterministic way, by comparing measured losses to well understood loss scenarios. This is done through a case study: different techniques were used on a restrained set of loss scenarios, as a proof of concept of the possibility to extract information from a loss profile. Finding the origin of the losses should allow acting in response. A justification of the doctoral work will be given at the end of chap. 2. Then, this thesis will focus on the theoretical understanding and the implementation of the decomposition of a measured loss profile as a linear combination of the reference scenarios; and the evaluation of the error on the recomposition and its correctness. The principles of vector decomposition are developed in chap. 3. An ensemble of well controlled loss scenarios (such as vertical and horizontal blow-up of the beams or momentum offset during collimator loss maps) has been gathered, in order to allow the study and creation of reference vectors. To achieve the Vector Decomposition, linear algebra (matrix inversion) is used with the numeric algorithm for the Singular Value Decomposition. Additionally, a specific code for vector projection on a non-orthogonal basis of a hyperplane was developed. The implementation of the vector decomposition on the LHC data is described in chap. 4. After this, the use of the decomposition tools systematically on the time evolution of the losses will be described: first as a study of the variations second by second, then by comparison to a calculated default loss profile. The different ways to evaluate the variation are studied, and are presented in chap. 5. The next chapter (6) describes the gathering of decomposition results applied to beam losses of 2011. The vector decomposition is applied on every second of the ''stable beans'' periods, as a study of the spatial distribution of the loss. Several comparisons of the results given by the decompositions with measurements from other LHC instruments allowed different validations. Eventually, a global conclusion on the interest of the vector decomposition is given. Then, the extra chapter in Appendix A describes the code which was developed to access the BLM data, to represent them in a meaningful way, and to store them. This included connecting to different databases. The whole instrument uses ROOT objects to send SQL queries to the databases, as well as java API, and is coded in Python. A short glossary of the acronyms used here can be found at the end, before the bibliography.
4

Χάρτης απωλειών ρεύματος δέσμης για την τρίτη πειραματική διάταξη του συμπαγούς γραμμικού επιταχυντή του CERN

Βαργιακάκης, Γεώργιος 03 October 2011 (has links)
Η παρούσα εργασία εστιάζει στη διαδικασία δημιουργίας του χάρτη απωλειών ρεύματος της δέσμης ηλεκτρονίων κατά μήκος της Tρίτης Πειραματικής Διάταξης για το Συμπαγή Γραμμικό Επιταχυντή του Ευρωπαϊκού Κέντρου Πυρηνικών Ερευνών CERN (Beam Loss Map for Clic Test Facility 3). Ο χάρτης απωλειών χρησιμοποιείται για τον προσδιορισμό των σημείων στα οποία υπάρχει απώλεια ρεύματος των φορτίων της δέσμης. Ο προσδιορισμός των σημείων αυτών είναι πρωτεύουσας σημασίας, τόσο από θεωρητική όσο και από πρακτική πλευρά, επειδή πιθανές απώλειες συνεπάγονται αυξημένους κινδύνους έκθεσης σε ακτινοβολία για τον άνθρωπο, πιθανές βλάβες στα μαγνητικά στοιχεία, αλλά και μείωση της ισχύος της δέσμης. Στο πρώτο μέρος της εργασίας, παρουσιάζεται το Ευρωπαϊκό Κέντρο Πυρηνικών Ερευνών και οι πειραματικές εγκαταστάσεις στις οποίες έγινε η παρούσα εργασία. Στη συνέχεια, περιγράφεται η συλλογή και ανάλυση των δεδομένων με στόχο την χαρτογράφηση των σημείων απώλειας ρεύματος δέσμης στο σύμπλεγμα του CTF3. / The Diploma Thesis focuses on creating the Beam Loss Map for Compact Linear Collider Test Facility 3, at CERN. The goal of the project is the allocation of the points where beam current losses occur. Defining these points is of great importance, because any loss of beam current, especially at the maximum energy of 150 MeV, can induce radiation activation along the machine, which is dangerous for both the hardware and the personnel who need to service the machine. In the first part of the project, CERN, LHC and CLIC are presented. The second part contains data analysis, presentation of the calibration procedure of the BPMs, the new scaling factors and finally the Beam Loss Map for CTF3.

Page generated in 0.059 seconds