• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monitoring hydrodynamic bearings with acoustic emission and vibration analysis

Mirhadizadeh, S. A. January 2012 (has links)
Acoustic emission (AE) is one of many available technologies for condition health monitoring and diagnosis of rotating machines such as bearings. In recent years there have been many developments in the use of Acoustic Emission technology (AET) and its analysis for monitoring the condition of rotating machinery whilst in operation, particularly on high speed machinery. Unlike conventional technologies such as oil analysis, motor current signature analysis (MCSA) and vibration analysis, AET has been introduced due to its increased sensitivity in detecting the earliest stages of loss of mechanical integrity. This research presents an experimental investigation that is aimed at developing a mathematical model and experimentally validating the influence of operational variables such as film thickness, rotational speed, load, power loss, and shear stress for variations of load and speed conditions, on generation of acoustic emission in a hydrodynamic bearing. It is concluded that the power losses of the bearing are directly correlated with acoustic emission levels. With exponential law, an equation is proposed to predict power losses with reasonable accuracy from an AE signal. This experimental investigation conducted a comparative study between AE and Vibration to diagnose the rubbing at high rotational speeds in the hydrodynamic bearing. As it is the first known attempt in rotating machines. It has been concluded, that AE parameters such as amplitude, can perform as a reliable and sensitive tool for the early detection of rubbing between surfaces of a hydrodynamic bearing and high speed shaft. The application of vibration (PeakVue) analysis was introduced and compared with demodulation. The results observed from the demodulation and PeakVue techniques were similar in the rubbing simulation test. In fact, some defects on hydrodynamic bearings would not have been seen in a timely manner without the PeakVue analysis. In addition, the application of advanced signal processing and statistical methods was established to extract useful diagnostic features from the acquired AE signals in both time and frequency domain. It was also concluded that the use of different signal processing methods is often necessary to achieve meaningful diagnostic information from the signals. The outcome would largely contribute to the development of effective intelligent condition monitoring systems which can significantly reduce the cost of plant maintenance. To implement these main objectives, the Sutton test rig was modified to assess the capability of AET and vibration analysis as an effective tool for the detection of incipient defects within high speed machine components (e.g. shafts and hydrodynamic bearings). The first chapter of this thesis is an introduction to this research and briefly explains motivation and the theoretical background supporting this research. The second and third chapters, summarise the relevant literature to establish the current level of knowledge of hydrodynamic bearings and acoustic emission, respectively. Chapter 4 describes methodologies and the experimental arrangements utilized for this investigation. Chapter 5 discusses different NDT diagnosis. Chapter 6 reports on an experimental investigation applied to validate the relationship between AET on operational rotating machines, such as film thickness, speed, load, power loss, and shear stress. Chapter 7 details an investigation which compares the applicability of AE and vibration technologies in monitoring a rubbing simulation on a hydrodynamic bearing.
2

Applying Adaptive Prognostics to Rolling Element Bearings

Lindsay, Tara Reeves 28 November 2005 (has links)
Rolling element bearing failure can cause problems for industries ranging from mild inconveniences such as simple replacement to catastrophic damage such as large production-line equipment failure. Rolling element bearing failure has plagued industries for many years. Bearings are currently monitored to determine whether or not there is a defect in the bearing, but the remaining lifetime of the bearing remains unknown. This research estimates the bearings remaining lifetime through digital signal processing in conjunction with a modified version of Pariss equationa fatigue-failure equation well known in rotating machinery prognostics. An energy quantity, coined the Power Spectrum Value (PSV), is the maximum amplitude of the frequencies within a relatively small band around the resonant frequency of the system. The current PSV is estimated and updated using a chronologically weighted least squares algorithm. It is this PSV which is implemented in the modified Paris equation to determine the remaining lifetime of the bearing. This research presents a non-intrusive method of determining the lifetime of the bearing so that the bearings utility is maximized and reactive maintenance procedures are minimized.
3

Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring

SHI, Juanjuan January 2015 (has links)
As the failure of a bearing could cause cascading breakdowns of the mechanical system and then lead to costly repairs and production delays, bearing condition monitoring has received much attention for decades. One of the primary methods for this purpose is based on the analysis of vibration signal measured by accelerometers because such data are information-rich. The vibration signal collected from a defective bearing is, however, a mixture of several signal components including the fault-generated impulses, interferences from other machine components, and background noise, where fault-induced impulses are further modulated by various low frequency signal contents. The compounded effects of interferences, background noise and the combined modulation effects make it difficult to detect bearing faults. This is further complicated by the nonstationary nature of vibration signals due to speed variations in some cases, such as the bearings in a wind turbine. As such, the main challenges in the vibration-based bearing monitoring are how to address the modulation, noise, interference, and nonstationarity matters. Over the past few decades, considerable research activities have been carried out to deal with the first three issues. Recently, the nonstationarity matter has also attracted strong interests from both industry and academic community. Nevertheless, the existing techniques still have problems (deficiencies) as listed below: (1) The existing enveloping methods for bearing fault feature extraction are often adversely affected by multiple interferences. To eliminate the effect of interferences, the prefiltering is required, which is often parameter-dependent and knowledge-demanding. The selection of proper filter parameters is challenging and even more so in a time-varying environment. (2) Even though filters are properly designed, they are of little use in handling in-band noise and interferences which are also barriers for bearing fault detection, particularly for incipient bearing faults with weak signatures. (3) Conventional approaches for bearing fault detection under constant speed are no longer applicable to the variable speed case because such speed fluctuations may cause “smearing” of the discrete frequencies in the frequency representation. Most current methods for rotating machinery condition monitoring under time-varying speed require signal resampling based on the shaft rotating frequency. For the bearing case, the shaft rotating frequency is, however, often unavailable as it is coupled with the instantaneous fault characteristic frequency (IFCF) by a fault characteristic coefficient (FCC) which cannot be determined without knowing the fault type. Additionally, the effectiveness of resampling-based methods is largely dependent on the accuracy of resampling procedure which, even if reliable, can complicate the entire fault detection process substantially. (4) Time-frequency analysis (TFA) has proved to be a powerful tool in analyzing nonstationary signal and moreover does not require resampling for bearing fault identification. However, the diffusion of time-frequency representation (TFR) along time and frequency axes caused by lack of energy concentration would handicap the application of the TFA. In fact, the reported TFA applications in bearing fault diagnosis are still very limited. To address the first two aforementioned problems, i.e., (1) and (2), for constant speed cases, two morphology-based methods are proposed to extract bearing fault feature without prefiltering. Another two methods are developed to specifically handle the remaining problems for the bearing fault detection under time-varying speed conditions. These methods are itemized as follows: (1) An efficient enveloping method based on signal Fractal Dimension (FD) for bearing fault feature extraction without prefiltering, (2) A signal decomposition technique based on oscillatory behaviors for noise reduction and interferences removal (including in-band ones), (3) A prefiltering-free and resampling-free approach for bearing fault diagnosis under variable speed condition via the joint application of FD-based envelope demodulation and generalized demodulation (GD), and (4) A combined dual-demodulation transform (DDT) and synchrosqueezing approach for TFR energy concentration level enhancement and bearing fault identification. With respect to constant speed cases, the FD-based enveloping method, where a short time Fractal dimension (STFD) transform is proposed, can suppress interferences and highlight the fault-induced impulsive signature by transforming the vibration signal into a STFD representation. Its effectiveness, however, deteriorates with the increased complexity of the interference frequencies, particularly for multiple interferences with high frequencies. As such, the second method, which isolates fault-induced transients from interferences and noise via oscillatory behavior analysis, is then developed to complement the FD-based enveloping approach. Both methods are independent of frequency information and free from prefiltering, hence eliminating the tedious process for filter parameter specification. The in-band vibration interferences can also be suppressed mainly by the second approach. For the nonstationary cases, a prefiltering-free and resampling-free strategy is developed via the joint application of STFD and GD, from which a resampling-free order spectrum can be derived. This order spectrum can effectively reveal not only the existence of a fault but also its location. However, the success of this method relies largely on an effective enveloping technique. To address this matter and at the same time to exploit the advantages of TFA in nonstationary signal analysis, a TFA technique, involving dual demodulations and an iterative process, is developed and innovatively applied to bearing fault identification. The proposed methods have been validated using both simulation and experimental data collected in our lab. The test results have shown that the first two methods can effectively extract fault signatures, remove the interferences (including in-band ones) without prefiltering, and detect fault types from vibration signals for constant speed cases. The last two have shown to be effective in detecting faults and discern fault types from vibration data collected under variable speed conditions without resampling and prefiltering.
4

Vibration condition monitoring and fault classification of rolling element bearings utilising Kohonen's self-organising maps

Nkuna, Jay Shipalani Rhulani 09 1900 (has links)
Thesis. (M. Tech. (Mechanical Engineering))--Vaal University of Technology / Bearing condition monitoring and fault diagnosis have been studied for many years. Popular techniques are applied through advanced signal processing and pattern recognition technologies. The subject of the research was vibration condition monitoring of incipient damage in rolling element bearings. The research was confined to deep-groove ball bearings because of their common applications in industry. The aim of the research was to apply neural networks to vibration condition monitoring of rolling element bearings. Kohonen's Self-Organising Feature Map is the neural network that was used to enable an automatic condition monitoring system. Bearing vibration is induced during bearing operation and the main cause is bearing friction, which ultimately causes wear and incipient spalling in a rolling element bearing. To obtain rolling element bearing vibrations a condition monitoring test rig for rolling element bearings had to be designed and built. A digital vibration measurement acquisition environment was created in Labview and Matlab. Data from the bearing test rig was recorded with a piezoelectric accelerometer, and an S-type load cell connected to dynamic signal analysis cards. The vibration measurement instrumentation was cost-effective and yielded accurate and repeatable measurements. Defects on rolling element bearings were artificially inflicted so that a pattern of bearing defects could be established. An input data format of vibration statistical parameters was created using the time and frequency domain signals. Kohonen's Self-Organising Feature Maps were trained in the input data, utilising an unsupervised, competitive learning algorithm and vector quantisation to cluster the bearing defects on a two-dimensional topographical map. A new practical dimension to condition monitoring of rolling element bearings was developed. The use of time domain and frequency domain analysis of bearing vibration has been combined with a visual and classification analysis of distinct bearing defects through the application of the Self-Organising Feature Map. This is a suitable technique for rolling element bearing defect detection, remaining bearing life estimation and to assist in planning maintenance schedules. / National Research Foundation; Council for Scientific and Industrial Research

Page generated in 0.2549 seconds