• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New techniques for vibration condition monitoring : Volterra kernel and Kolmogorov-Smirnov

Andrade, Francisco Arruda Raposo January 1999 (has links)
This research presents a complete review of signal processing techniques used, today, in vibration based industrial condition monitoring and diagnostics. It also introduces two novel techniques to this field, namely: the Kolmogorov-Smirnov test and Volterra series, which have not yet been applied to vibration based condition monitoring. The first technique, the Kolmogorov-Smirnov test, relies on a statistical comparison of the cumulative probability distribution functions (CDF) from two time series. It must be emphasised that this is not a moment technique, and it uses the whole CDF, in the comparison process. The second tool suggested in this research is the Volterra series. This is a non-linear signal processing technique, which can be used to model a time series. The parameters of this model are used for condition monitoring applications. Finally, this work also presents a comprehensive comparative study between these new methods and the existing techniques. This study is based on results from numerical and experimental applications of each technique here discussed. The concluding remarks include suggestions on how the novel techniques proposed here can be improved.
2

Vibration condition monitoring and fault classification of rolling element bearings utilising Kohonen's self-organising maps

Nkuna, Jay Shipalani Rhulani 09 1900 (has links)
Thesis. (M. Tech. (Mechanical Engineering))--Vaal University of Technology / Bearing condition monitoring and fault diagnosis have been studied for many years. Popular techniques are applied through advanced signal processing and pattern recognition technologies. The subject of the research was vibration condition monitoring of incipient damage in rolling element bearings. The research was confined to deep-groove ball bearings because of their common applications in industry. The aim of the research was to apply neural networks to vibration condition monitoring of rolling element bearings. Kohonen's Self-Organising Feature Map is the neural network that was used to enable an automatic condition monitoring system. Bearing vibration is induced during bearing operation and the main cause is bearing friction, which ultimately causes wear and incipient spalling in a rolling element bearing. To obtain rolling element bearing vibrations a condition monitoring test rig for rolling element bearings had to be designed and built. A digital vibration measurement acquisition environment was created in Labview and Matlab. Data from the bearing test rig was recorded with a piezoelectric accelerometer, and an S-type load cell connected to dynamic signal analysis cards. The vibration measurement instrumentation was cost-effective and yielded accurate and repeatable measurements. Defects on rolling element bearings were artificially inflicted so that a pattern of bearing defects could be established. An input data format of vibration statistical parameters was created using the time and frequency domain signals. Kohonen's Self-Organising Feature Maps were trained in the input data, utilising an unsupervised, competitive learning algorithm and vector quantisation to cluster the bearing defects on a two-dimensional topographical map. A new practical dimension to condition monitoring of rolling element bearings was developed. The use of time domain and frequency domain analysis of bearing vibration has been combined with a visual and classification analysis of distinct bearing defects through the application of the Self-Organising Feature Map. This is a suitable technique for rolling element bearing defect detection, remaining bearing life estimation and to assist in planning maintenance schedules. / National Research Foundation; Council for Scientific and Industrial Research

Page generated in 0.1746 seconds