• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Indoor Positioning Using Angle of Departure Information

Gunhardson, Erica January 2015 (has links)
I detta examensarbete undersöks möjligheten att kunna använda en positioneringsmetod som inte enbart förlitar sig på den uppmätta signalstyrkan. Istället används en metod som bestämmer från vilken vinkel en signal uppkommer ifrån. Den här tekniken kallas för direction-finding. När informationen om signalens vinkel fastställts används den i ett positioningsfilter som uppskattar positionen. Två tillvägagångssätt har använts i den här rapporten, ett där enbart vinkeln används och ett där både signalstyrka och vinkel används.
2

A Series of Improved and Novel Methods in Computer Vision Estimation

Adams, James J 07 December 2023 (has links) (PDF)
In this thesis, findings in three areas of computer vision estimation are presented. First, an improvement to the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm is presented in which gyroscope data is incorporated to compensate for camera rotation. This improved algorithm is then compared with the original algorithm and shown to be more effective at tracking features in the presence of large rotational motion. Next, a deep neural network approach to depth estimation is presented. Equations are derived relating camera and feature motion to depth. The information necessary for depth estimation is given as inputs to a deep neural network, which is trained to predict depth across an entire scene. This deep neural network approach is shown to be effective at predicting the general structure of a scene. Finally, a method of passively estimating the position and velocity of constant velocity targets using only bearing and time-to-collision measurements is presented. This method is paired with a path planner to avoid tracked targets. Results are given to show the effectiveness of the method at avoiding collision while maneuvering as little as possible.
3

Simultaneous Localization and Mapping for an Unmanned Aerial Vehicle Using Radar and Radio Transmitters / Lokalisering och kartläggning för en UAV med hjälp av radar och radiosändare

Dahlin, Alfred January 2014 (has links)
The Global Positioning System (GPS) is a cornerstone in Unmanned Aerial Vehicle (UAV) navigation and is by far the most common way to obtain the position of a UAV. However, since there are many scenarios in which GPS measurements might not be available, the possibility of estimating the UAV position without using the GPS would greatly improve the overall robustness of the navigation. This thesis studies the possibility of instead using Simultaneous Localisation and Mapping (SLAM) in order to estimate the position of a UAV using an Inertial Measurement Unit (IMU) and the direction towards ground based radio transmitters without prior knowledge of their position. Simulations using appropriately generated data provides a feasibility analysis which shows promising results for position errors for outdoor trajectories over large areas, however with some issues regarding overall offset. The method seems to have potential but further studies are required using the measurements from a live flight, in order to determine the true performance.
4

Parallel algorithms for target tracking on multi-coreplatform with mobile LEGO robots

Wahlberg, Fredrik January 2011 (has links)
The aim of this master thesis was to develop a versatile and reliable experimentalplatform of mobile robots, solving tracking problems, for education and research.Evaluation of parallel bearings-only tracking and control algorithms on a multi-corearchitecture has been performed. The platform was implemented as a mobile wirelesssensor network using multiple mobile robots, each using a mounted camera for dataacquisition. Data processing was performed on the mobile robots and on a server,which also played the role of network communication hub. A major focus was toimplement this platform in a flexible manner to allow for education and futureresearch in the fields of signal processing, wireless sensor networks and automaticcontrol. The implemented platform was intended to act as a bridge between the idealworld of simulation and the non-ideal real world of full scale prototypes.The implemented algorithms did estimation of the positions of the robots, estimationof a non-cooperating target's position and regulating the positions of the robots. Thetracking algorithms implemented were the Gaussian particle filter, the globallydistributed particle filter and the locally distributed particle filter. The regulator triedto move the robots to give the highest possible sensor information under givenconstraints. The regulators implemented used model predictive control algorithms.Code for communicating with filters in external processes were implementedtogether with tools for data extraction and statistical analysis.Both implementation details and evaluation of different tracking algorithms arepresented. Some algorithms have been tested as examples of the platformscapabilities, among them scalability and accuracy of some particle filtering techniques.The filters performed with sufficient accuracy and showed a close to linear speedupusing up to 12 processor cores. Performance of parallel particle filtering withconstraints on network bandwidth was also studied, measuring breakpoints on filtercommunication to avoid weight starvation. Quality of the sensor readings, networklatency and hardware performance are discussed. Experiments showed that theplatform was a viable alternative for data acquisition in algorithm development and forbenchmarking to multi-core architecture. The platform was shown to be flexibleenough to be used a framework for future algorithm development and education inautomatic control.
5

Airborne Angle-Only Geolocalization

Kallin, Tove January 2021 (has links)
Airborne angle-only geolocalization is the localization of objects on ground level from airborne vehicles (AV) using bearing measurements, namely azimuth and elevation. This thesis aims to introduce elevation data of the terrain to the airborne angle-only geolocalization problem and to demonstrate that it could be applicable for localization of jammers. Jammers are often used for deliberate interference with malicious intent which could interfere with the positioning system of a vehicle. It is important to locate the jammers to either avoid them or to remove them.    Three localization methods, i.e. the nonlinear least squares (NLS), the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), are implemented and tested on simulated data. The methods are also compared to the theoretical lower bound, the Cramér-Rao Lower Bound (CRLB), to see if there is an efficient estimator. The simulated data are different scenarios where the number of AVs, the relative flight path of the AVs and the knowledge of the terrain can differ. Using the knowledge of the terrain elevation, the methods give more consistent localization than without it. Without elevation data, the localization relies on good geometry of the problem, i.e. the relative flight path of the AVs, while the geometry is not as critical when elevation data is available. However, the elevation data does not always improve the localization for certain geometries.    There is no method that is clearly better than the others when elevation data is used. The methods’ performances are very similar and they all converge to the CRLB but that could also be an advantage. This makes the usage of elevation data not restricted to a certain method and it leaves more up to the implementer which method they prefer.
6

Bearing-only SLAM : a vision-based navigation system for autonomous robots

Huang, Henry January 2008 (has links)
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
7

Robot navigation in sensor space

Keeratipranon, Narongdech January 2009 (has links)
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.

Page generated in 0.0464 seconds