Spelling suggestions: "subject:"behaviorbased lemsystems"" "subject:"behaviorbased atemsystems""
1 |
Specialization of Perceptual ProcessesHorswill, Ian 22 April 1995 (has links)
In this report, I discuss the use of vision to support concrete, everyday activity. I will argue that a variety of interesting tasks can be solved using simple and inexpensive vision systems. I will provide a number of working examples in the form of a state-of-the-art mobile robot, Polly, which uses vision to give primitive tours of the seventh floor of the MIT AI Laboratory. By current standards, the robot has a broad behavioral repertoire and is both simple and inexpensive (the complete robot was built for less than $20,000 using commercial board-level components). The approach I will use will be to treat the structure of the agent's activity---its task and environment---as positive resources for the vision system designer. By performing a careful analysis of task and environment, the designer can determine a broad space of mechanisms which can perform the desired activity. My principal thesis is that for a broad range of activities, the space of applicable mechanisms will be broad enough to include a number mechanisms which are simple and economical. The simplest mechanisms that solve a given problem will typically be quite specialized to that problem. One thus worries that building simple vision systems will be require a great deal of {it ad-hoc} engineering that cannot be transferred to other problems. My second thesis is that specialized systems can be analyzed and understood in a principled manner, one that allows general lessons to be extracted from specialized systems. I will present a general approach to analyzing specialization through the use of transformations that provably improve performance. By demonstrating a sequence of transformations that derive a specialized system from a more general one, we can summarize the specialization of the former in a compact form that makes explicit the additional assumptions that it makes about its environment. The summary can be used to predict the performance of the system in novel environments. Individual transformations can be recycled in the design of future systems.
|
2 |
Using Backward Chained Behavior Trees to Control Cooperative Minecraft Agents / Användning av bakåtkedjade beteendeträd för att kontrollera samarbetande agenter i MinecraftSalér, Justin January 2023 (has links)
This report presents a strategy to control multiple collaborative intelligent agents acting in a complex, versatile environment. The proposed method utilizes back-chained behavior trees and 1-to-1 task distribution. The agents claim a task, which prevents other agents in the system to start working on the same task. Backward chaining is an algorithm for generating reactive agents from a set of goals. The method was evaluated in Minecraft with Microsoft’s Project Malmo API. Two different scenarios were considered. In the first one, a group of agents collaborated to build a structure. In the second one, a group of agents collaborated while gathering material. We propose and evaluate three algorithms with different levels of agent-cooperation and complexity (Algorithm 1, Algorithm 2, and Algorithm 3). The evaluation shows that backward chained Behaviour Trees (BTs) works well for multiagent coordination in complex versatile environments and that adding 1-to-1 task distribution increases the efficiency of the agents when completing the experiment tasks. / Rapporten presenterar en metod för styrning av en grupp kollaborativa intelligenta agenter agerande i en komplex dynamisk miljö. Den förslagna metoden använder sig av bakåtkedjade beteendeträd och 1-mot-1 uppgiftsdistribution, där en agent reserverar en uppgift vilket hindrar andra agenter att börja arbeta på samma uppgift. Bakåtkedjning är en metod som möjliggör generering av flexibla agenter utifrån en lista av mål och krav. Metoden utvärderades i två olika scenarion i tv-spelet Minecraft. Agenterna samarbetar i det första scenariot med att bygga en struktur och i det andra scenariot med att samla material. Vi föreslår och utvärderar tre algoritmer med olika nivåer av agentsamarbete och komplexitet (Algoritm 1, Algoritm 2, och Algorithm 3). Utvärderingerarna indikerar att bakåtkedjade beteendeträd fungerar bra för multiagentkoordination i komplexa dynamiska miljöer och att 1-mot-1 uppgiftsdistribution ökar agenternas förmåga att genomföra experimentuppgifterna ytterligare.
|
Page generated in 0.0679 seconds