• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 8
  • 6
  • 2
  • 2
  • 2
  • Tagged with
  • 46
  • 46
  • 12
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Digital Library Success Model for Computer Science Student Use of a Meta-Search System

Vidya Sagar, Vikram Raj 12 February 2007 (has links)
The success of any product of Information Technology lies in its acceptance by the target audience. Several behavioral models have been formulated to analyze factors that affect human decisions to accept new technology while some technology is already in place. These models enable us to identify the areas of concern within the system and its environment and to address them. However, these models are based in industrial settings, and are more suited to situations when a person is introduced to the field of Information Technology. A separate stream of research tries to model the factors that cause an Information System, especially at the workplace, to be termed a success. No such models exist for the academic community and the Computer Science student community, in particular. In this thesis, the success of a new academic meta-search system for the Computer Science student community is measured and the extent to which various factors affect this success is identified. For this purpose, an Information System success model is composed with the help of models for technology acceptance and Digital Library quality metrics. The resultant model is then used to formulate a survey instrument and the results of a user study with this instrument are used to begin to validate this model. / Master of Science
2

Behavioral Modeling of Power Amplifier with Memory Effect and Linearization Using Digital Pre Distortion

Nandi, Om Prakash January 2016 (has links)
This thesis work studied the behavioral modeling, estimation of parameters, model performance and linearization of power amplifier (PA) using Digital Pre Distortion (DPD) technique. PAs are one of the fundamental block in communication systems and also one of the main sources of nonlinearities in the system, as these devices are frequently subjected to signals characterized by considerable bandwidths and non-constant envelopes due to use of modern modulation technique. Moreover, PAs have high efficiency level at its nonlinear region. So, to operate the PA at its high efficiency region, linearization operation needs to be done. This has been investigated in this thesis work with the help of behavioral modeling and DPD. An essential initial step in designing a linearizer for a PA is to model the PA nonlinearity accurately. Behavioral modeling has been used for PA model for its computational efficiency, which means by relating input and output signals without addressing to the physical analysis of the device. DPD technique has been chosen for linearizing the performance of PA based on their low requirement of resources for implementation. In this thesis, five different PA models with memory effect, based on Volterra series, are studied and compared for three different PAs selected by Ericsson. These PAs are designed for third and fourth generation telecommunication system. Two different signals with different peak to average ratios and different bandwidths have been used as input signals of PA for this study. The main result in this thesis work includes the comparison of all five forward behavioral modeling results for all three PA’s. The results also describe that; two of the given PA’s can be linearized by using the DPD technique within the 3GPP standard regulations for ACPR.
3

Behavioral Modeling (verhaltensbasiert) in der Konstruktion von Zylinderköpfen

Berg, Wolfgang 12 May 2009 (has links) (PDF)
Einsatz von Optimierungen innerhalb von Pro/Engineer zur Konstruktion von Kanälen
4

Behavioral Modeling (BMX): zielorientiertes Konstruieren in Pro/ENGINEER

Simmler, Urs 01 June 2010 (has links) (PDF)
Der Vortrag zeigt die Einsatzmöglichkeiten und den Nutzen von BMX auf. Zudem wird die Vorgehensweise bei BMX-Analysen erläutert. Die Neuerungen in der Pro/ENGINEER-Version Wildfire 5 werden vorgestellt. Anhand von 3 Live-Demonstrationen wird die Anwendung von BMX gezeigt: - Flaschen-Volumen untersuchen - Messerkopf dynamisch auswuchten - Sichtfelduntersuchung
5

Efficient verification/testing of system-on-chip through fault grading and analog behavioral modeling

Jeong, Jae Hoon 10 February 2014 (has links)
This dissertation presents several cost-effective production test solutions using fault grading and mixed-signal design verification cases enabled by analog behavioral modeling. Although the latest System-on-Chip (SOC) is getting denser, faster, and more complex, the manufacturing technology is dominated by subtle defects that are introduced by small-scale technology. Thus, SOC requires more mature testing strategies. By performing various types of testing, better quality SoC can be manufactured, but test resources are too limited to accommodate all those tests. To create the most efficient production test flow, any redundant or ineffective tests need to be removed or minimized. Chapter 3 proposes new method of test data volume reduction by combining the nonlinear property of feedback shift register (FSR) and dictionary coding. Instead of using the nonlinear FSR for actual hardware implementation, the expanded test set by nonlinear expansion is used as the one-column test sets and provides big reduction ratio for the test data volume. The experimental results show the combined method reduced the total test data volume and increased the fault coverage. Due to the increased number of test patterns, total test time is increased. Chapter 4 addresses a whole process of functional fault grading. Fault grading has always been a ”desire-to-have” flow because it can bring up significant value for cost saving and yield analysis. However, it is very hard to perform the fault grading on the complex large scale SOC. A commercial tool called Z01X is used as a fault grading platform, and whole fault grading process is coordinated and each detailed execution is performed. Simulation- based functional fault grading identifies the quality of the given functional tests against the static faults and transition delay faults. With the structural tests and functional tests, functional fault grading can indicate the way to achieve the same test coverage by spending minimal test time. Compared to the consumed time and resource for fault grading, the contribution to the test time saving might not be acceptable as very promising, but the fault grading data can be reused for yield analysis and test flow optimization. For the final production testing, confident decisions on the functional test selection can be made based on the fault grading results. Chapter 5 addresses the challenges of Package-on-Package (POP) testing. Because POP devices have pins on both the top and the bottom of the package, the increased test pins require more test channels to detect packaging defects. Boundary scan chain testing is used to detect those continuity defects by relying on leakage current from the power supply. This proposed test scheme does not require direct test channels on the top pins. Based on the counting algorithm, minimal numbers of test cycles are generated, and the test achieved full test coverage for any combinations of pin-to-pin shortage defects on the top pins of the POP package. The experimental results show about 10 times increased leakage current from the shorted defect. Also, it can be expanded to multi-site testing with less test channels for high-volume production. Fault grading is applied within different structural test categories in Chapter 6. Stuck-at faults can be considered as TDFs having infinite delay. Hence, the TDF Automatic Test Pattern Generation (ATPG) tests can detect both TDFs and stuck-at faults. By removing the stuck-at faults being detected by the given TDF ATPG tests, the tests that target stuck-at faults can be reduced, and the reduced stuck-at fault set results in fewer stuck-at ATPG patterns. The structural test time is reduced while keeping the same test coverage. This TDF grading is performed with the same ATPG tool used to generate the stuck-at and TDF ATPG tests. To expedite the mixed-signal design verification of complex SoC, analog behavioral modeling methods and strategies are addressed in Chapter 7 and case studies for detailed verification with actual mixed-signal design are ad- dressed in Chapter 8. Analog modeling effort can enhance verification quality for a mixed-signal design with less turnaround time, and it enables compatible integration of the mixed-signal design cores into the SoC. The modeling process may reveal any potential design errors or incorrect testbench setup, and it results in minimizing unnecessary debugging time for quality devices. Two mixed-signal design cases were verified by me using the analog models. A fully hierarchical digital-to-analog converter (DAC) model is implemented and silicon mismatches caused by process variation are modeled and inserted into the DAC model, and the calibration algorithm for the DAC is successfully verified by model-based simulation at the full DAC-level. When the mismatch amount is increased and exceeded the calibration capability of the DAC, the simulation results show the increased calibration error with some outliers. This verification method can identify the saturation range of the DAC and predict the yield of the devices from process variation. A phase-locked loop (PLL) design cases were also verified by me using the analog model. Both open-loop PLL model and closed-loop PLL model cases are presented. Quick bring-up of open-loop PLL model provides low simulation overhead for widely-used PLLs in the SOC and enables early starting of design verification for the upper-level design using the PLL generated clocks. Accurate closed-loop PLL model is implemented for DCO-based PLL design, and the mixed-simulation with analog models and schematic designs enables flexible analog verification. Only focused analog design block is set to the schematic design and the rest of the analog design is replaced by the analog model. Then, this scaled-down SPICE simulation is performed about 10 times to 100 times faster than full-scale SPICE simulation. The analog model of the focused block is compared with the scaled-down SPICE simulation result and the quality of the model is iteratively enhanced. Hence, the analog model enables both compatible integration and flexible analog design verification. This dissertation contributes to reduce test time and to enhance test quality, and helps to set up efficient production testing flows. Depending on the size and performance of CUT, proper testing schemes can maximize the efficiency of production testing. The topics covered in this dissertation can be used in optimizing the test flow and selecting the final production tests to achieve maximum test capability. In addition, the strategies and benefits of analog behavioral modeling techniques that I implemented are presented, and actual verification cases shows the effectiveness of analog modeling for better quality SoC products. / text
6

Behavioral Pattern Mining and Modeling in Programming Problem Solving

January 2017 (has links)
abstract: Online learning platforms such as massive online open courses (MOOCs) and intelligent tutoring systems (ITSs) have made learning more accessible and personalized. These systems generate unprecedented amounts of behavioral data and open the way for predicting students’ future performance based on their behavior, and for assessing their strengths and weaknesses in learning. This thesis attempts to mine students’ working patterns using a programming problem solving system, and build predictive models to estimate students’ learning. QuizIT, a programming solving system, was used to collect students’ problem-solving activities from a lower-division computer science programming course in 2016 Fall semester. Differential mining techniques were used to extract frequent patterns based on each activity provided details about question’s correctness, complexity, topic, and time to represent students’ behavior. These patterns were further used to build classifiers to predict students’ performances. Seven main learning behaviors were discovered based on these patterns, which provided insight into students’ metacognitive skills and thought processes. Besides predicting students’ performance group, the classification models also helped in finding important behaviors which were crucial in determining a student’s positive or negative performance throughout the semester. / Dissertation/Thesis / Masters Thesis Computer Science 2017
7

Moderní metody verifikace smíšených integrovaných obvodů / Modern methods of mixed-signal integrated circuit verification

Hradil, Jaroslav January 2014 (has links)
Tato diplomová práce se zabývá verifikací integrovaných obvodů pracujících ve smíšeném módu. Teoretická část práce obsahuje přehled moderních verifikačních metod a zaměřuje se zejména na „assertion based methodology“ . V praktické části práce jsou pak rozebrány popisné jazyky používané u této metody, a následně je vytvořen kód pro verifikaci bloku řídícího obvodu spínaných zdrojů.
8

INTEGRATING BEHAVIORAL MODELING AND SIMULATION FOR MEMS COMPONENTS INTO CAD FOR VLSI

GIBSON, DENNIS 16 September 2002 (has links)
No description available.
9

Mixed signal design flow, a mixed signal PLL case study

Shariat Yazdi, Ramin January 2001 (has links)
Mixed-signal designs are becoming more and more complex every day. In order to adapt to the new market requirements, a formal process for design and verification of mixed signal systems i. e. top-down design and bottom-up verification methodology is required. This methodology has already been established for digital design. The goal of this research is to propose a new design methodology for mixed signal systems. In the first two chapters of this thesis, the need for a mixed signal design flow based on top-down design methodology will be discussed. The proposed design flow is based on behavioral modeling of the mixed signal system using one of the mixed signal behavioral modeling languages. These models can be used for design and verification through different steps of the design from system level modeling to final physical design. The other advantage of the proposed flow is analog and digital co-design. In the remaining chapters of this thesis, the proposed design flow was verified by designing an 800 MHz mixed signal PLL. The PLL uses a charge pump phase frequency detector, a single capacitor loop filter, and a feed forward error correction architecture using an active damping control circuit instead of passive resistor in loop filter. The design was done in 0. 18- <i>??</i> m CMOS process technology.
10

Complexity Reduced Behavioral Models for Radio Frequency Power Amplifiers’ Modeling and Linearization

Fares, Marie-Claude January 2009 (has links)
Radio frequency (RF) communications are limited to a number of frequency bands scattered over the radio spectrum. Applications over such bands increasingly require more versatile, data extensive wireless communications that leads to the necessity of high bandwidth efficient interfaces, operating over wideband frequency ranges. Whether for a base station or mobile device, the regulations and adequate transmission of such schemes place stringent requirements on the design of transmitter front-ends. Increasingly strenuous and challenging hardware design criteria are to be met, especially so in the design of power amplifiers (PA), the bottle neck of the transmitter’s design tradeoff between linearity and power efficiency. The power amplifier exhibits a nonideal behavior, characterized by both nonlinearity and memory effects, heavily affecting that tradeoff, and therefore requiring an effective linearization technique, namely Digital Predistortion (DPD). The effectiveness of the DPD is highly dependent on the modeling scheme used to compensate for the PA’s nonideal behavior. In fact, its viability is determined by the scheme’s accuracy and implementation complexity. Generic behavioral models for nonlinear systems with memory have been used, considering the PA as a black box, and requiring RF designers to perform extensive testing to determine the minimal complexity structure that achieves satisfactory results. This thesis first proposes a direct systematic approach based on the parallel Hammerstein structure to determine the exact number of coefficients needed in a DPD. Then a physical explanation of memory effects is detailed, which leads to a close-form expression for the characteristic behavior of the PA entirely based on circuit properties. The physical expression is implemented and tested as a modeling scheme. Moreover, a link between this formulation and the proven behavioral models is explored, namely the Volterra series and Memory Polynomial. The formulation shows the correlation between parameters of generic behavioral modeling schemes when applied to RF PAs and demonstrates redundancy based on the physical existence or absence of modeling terms, detailed for the proven Memory polynomial modeling and linearization scheme.

Page generated in 0.0897 seconds