• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An online belief rule-based group clinical decision support system

Kong, Guilan January 2011 (has links)
Around ten percent of patients admitted to National Health Service (NHS) hospitals have experienced a patient safety incident, and an important reason for the high rate of patient safety incidents is medical errors. Research shows that appropriate increase in the use of clinical decision support systems (CDSSs) could help to reduce medical errors and result in substantial improvement in patient safety. However several barriers continue to impede the effective implementation of CDSSs in clinical settings, among which representation of and reasoning about medical knowledge particularly under uncertainty are areas that require refined methodologies and techniques. Particularly, the knowledge base in a CDSS needs to be updated automatically based on accumulated clinical cases to provide evidence-based clinical decision support. In the research, we employed the recently developed belief Rule-base Inference Methodology using the Evidential Reasoning approach (RIMER) for design and development of an online belief rule-based group CDSS prototype. In the system, belief rule base (BRB) was used to model uncertain clinical domain knowledge, the evidential reasoning (ER) approach was employed to build inference engine, a BRB training module was developed for learning the BRB through accumulated clinical cases, and an online discussion forum together with an ER-based group preferences aggregation tool were developed for providing online clinical group decision support.We used a set of simulated patients in cardiac chest pain provided by our research collaborators in Manchester Royal Infirmary to validate the developed online belief rule-based CDSS prototype. The results show that the prototype can provide reliable diagnosis recommendations and the diagnostic performance of the system can be improved significantly after training BRB using accumulated clinical cases.
2

An Intelligent Flood Risk Assessment System using Belief Rule Base

Hridoy, Md Rafiul Sabbir January 2017 (has links)
Natural disasters disrupt our daily life and cause many sufferings. Among the various natural disasters, flood is one of the most catastrophic. Assessing flood risk helps to take necessary precautions and can save human lives. The assessment of risk involves various factors which can not be measured with hundred percent certainty. Therefore, the present methods of flood risk assessment can not assess the risk of flooding accurately.  This research rigorously investigates various types of uncertainties associated with the flood risk factors. In addition, a comprehensive study of the present flood risk assessment approaches has been conducted. Belief Rule Base expert systems are widely used to handle various of types of uncertainties. Therefore, this research considers BRBES’s approach to develop an expert system to assess the risk of flooding. In addition, to facilitate the learning procedures of BRBES, an optimal learning algorithm has been proposed. The developed BRBES has been applied taking real world case study area, located at Cox’s Bazar, Bangladesh. The training data has been collected from the case study area to obtain the trained BRB and to develop the optimal learning model. The BRBES can generate different "What-If" scenarios which enables the analysis of flood risk of an area from various perspectives which makes the system robust and sustainable. This system is said to be intelligent as it has knowledge base, inference engine as well as the learning capability.
3

A Belief Rule Based Flood Risk Assessment Expert System Using Real Time Sensor Data Streaming

Monrat, Ahmed Afif January 2018 (has links)
Among the various natural calamities, flood is considered one of the most catastrophic natural hazards, which has a significant impact on the socio-economic lifeline of a country. The Assessment of flood risks facilitates taking appropriate measures to reduce the consequences of flooding. The flood risk assessment requires Big data which are coming from different sources, such as sensors, social media, and organizations. However, these data sources contain various types of uncertainties because of the presence of incomplete and inaccurate information. This paper presents a Belief rule-based expert system (BRBES) which is developed in Big data platform to assess flood risk in real time. The system processes extremely large dataset by integrating BRBES with Apache Spark while a web-based interface has developed allowing the visualization of flood risk in real time. Since the integrated BRBES employs knowledge driven learning mechanism, it has been compared with other data-driven learning mechanisms to determine the reliability in assessing flood risk. Integrated BRBES produces reliable results comparing from the other data-driven approaches. Data for the expert system has been collected targeting different case study areas from Bangladesh to validate the integrated system.
4

Belief Rule-Based Workload Orchestration in Multi-access Edge Computing

Jamil, Mohammad Newaj January 2022 (has links)
Multi-access Edge Computing (MEC) is a standard network architecture of edge computing, which is proposed to handle tremendous computation demands of emerging resource-intensive and latency-sensitive applications and services and accommodate Quality of Service (QoS) requirements for ever-growing users through computation offloading. Since the demand of end-users is unknown in a rapidly changing dynamic environment, processing offloaded tasks in a non-optimal server can deteriorate QoS due to high latency and increasing task failures. In order to deal with such a challenge in MEC, a two-stage Belief Rule-Based (BRB) workload orchestrator is proposed to distribute the workload of end-users to optimum computing units, support strict QoS requirements, ensure efficient utilization of computational resources, minimize task failures, and reduce the overall service time. The proposed BRB workload orchestrator decides the optimal execution location for each offloaded task from User Equipment (UE) within the overall MEC architecture based on network conditions, computational resources, and task requirements. EdgeCloudSim simulator is used to conduct comprehensive simulation experiments for evaluating the performance of the proposed BRB orchestrator in contrast to four workload orchestration approaches from the literature with different types of applications. Based on the simulation experiments, the proposed workload orchestrator outperforms state-of-the-art workload orchestration approaches and ensures efficient utilization of computational resources while minimizing task failures and reducing the overall service time.

Page generated in 0.0697 seconds