Spelling suggestions: "subject:"benzoin condensation"" "subject:"benzoin decondensation""
1 |
Mechanism Of The Benzoin Condensation And Related StudiesReddy, Dondleti Srinivasa 07 1900 (has links) (PDF)
Chapter 1: An assessment of the mechanism of the benzoin condensation. The reaction under non-hydroxylic conditions. The generally accepted mechanism for the well known benzion condensation is unviable for the following reasons: 1) No experimental evidence for formation of carbanion from oxyanion. 2) No experimental reports on pKa of ‘C-H” in intermediate oxyanion. 3) From previous reports, these types of carbanion are stable only at -78° C. 4) Carbanions possessing nucleofuges generally form carbenes.
It was observed that the O- protected benzaldehyde cyanohydrin (1) and O-MOM protected ethyl mandelate (2) are possibly less acidic than benzyl cyanide (3). Attempts to affect hydrogen-deuterium exchange in the O-methyl ether of benzaldehyde cyanohydrin (1) did not yield clear-cut results; neither could the analogous carbanion from O-MOM protected ethyl mandelate be formed, under analogous conditions. O-Protected benzaldehyde cyanohydrin and O-MOM protected ethyl mandelate (2) did not condense with electrophiles like benzaldehyde (4); however benzyl cyanide (3) was condensed with benzaldehyde to form the stilbene cyanide (5) under similar conditions to the benzoin condensation.
Scheme 1: Reactions under benzoin conditions.
All these evidences indicate that carbanions derived from 1 and 2 are not formed under the conditions of the benzoin reaction. An alternative mechanism via intramolecular participation in the cyanohydrin oxyanion leads initially to an imino-oxirane intermediate; electrophilic capture of this in the key step finally leads to benzoin (Scheme 2). This is an attractive possibility that avoids many of the problems of the earlier mechanism, and is also not incompatible with most of the available experimental evidence. Further experimental and theoretical work is indicated before an acceptable mechanism for the benzoin condensation finally emerges.
Scheme 2: A possible alternative mechanism of benzoin condensation
Scheme 2: A possible alternative mechanism of benzoin condensation
From the studies on mechanism of benzoin condensation, it seems possible to form imino-oxirane from oxyanion of benzaldehyde cyanohydrin instead of carbanion by participation of cyanide ion. To prove the cyanide ion participation in mechanism of benzoin condensation and to avoid ambiguities from O-H peak, the reaction was performed in 1,4 dioxane solvent with benzaldehyde (4) and cyanide with the phase transfer catalyst 18-crown-6, instead of EtOH and H2O as solvent. After mixing the IR spectra for the crude product, indicated the formation of benzoin (8), which was confirmed upon work up. This led to the developing of a novel method for the benzion under anhydrous conditions.
Scheme 3: Formation of benzoin under anhydrous conditions
Chapter 2: Stereochemical stability of benzion. Generally α-hydroxy ketones undergo tautomerism to the enediol form, which are stabilized by intramolecular hydrogen bonding. Because of this, they undergo racemisation. Benzoin is also a α-hydroxy ketone, but it can be resolved into its enantiomeric forms. It indicates enediol form of benzion is unstable possibly due to steric interference.
It was observed from the crystal structure of the carbonate analog of ene-diol form of benzoin that there is steric interference between the two phenyl rings. These were twisted out of the plane of the carbonate moiety by 19.92° and -47.32°. (The crystal structure of 4,5-diphenyl-1,3-dioxol-2-one (9) was reported first time.) This structure also indicated the existence of atropisomerism in the crystalline lattice.
Chapter 3: Polymerisation of benzaldehyde. α-Hydroxy esters can be viewed as surrogates of cyanohydrins. To prove the cyanohydrin anion intermediate in classical benzoin condensation mechanism is very difficult. An interesting alternative is to employ α-hydroxy esters instead.
It was observed that methyl 2-phenylglyoxylate and methyl 2-(methoxymethyl)-2-phenylglyoxylate (2) failed to react with benzaldehyde in aqueous methanol with sodium carbonate as base. IR spectra indicated that the carbonyl peak of benzaldehyde has disappeared, but NMR spectra showed a mixture of methyl 2-(methoxymethyl)-2-phenylglyoxylate (2) and benzaldehyde (4). This seems to indicate the polymerization of benzaldehyde (10) (Scheme 4). However, the product was not stable enough to be isolated and purified.
Scheme 4: Reaction between benzaldehyde and MOM-protected methyl mandalate
(For structural formula pl see the abstract file.)
|
2 |
Cyanide-catalyzed C-C bond formation: synthesis of novel compounds, materials and ligands for homogeneous catalysisReich, Blair Jesse Ellyn 25 April 2007 (has links)
Cyanide-catalyzed aldimine coupling was employed to synthesize compounds
with 1,2-ene-diamine and ñ-imine-amine structural motifs: 1,2,N,N'-
tetraphenyletheylene-1,2-diamine (13) and (+/-)-2,3-di-(2-hydroxyphenyl)-1,2-
dihydroquinoxaline (17), respectively. Single crystal X-ray diffraction provided solidstate
structures and density functional theory calculations were used to probe isomeric
preferences within this and the related hydroxy-ketone/ene-diol system. The enediamine
and imine-amine core structures were calculated to be essentially identical in
energy. However, additional effects-such as ÃÂ conjugation-in 13 render an enediamine
structure that is slightly more stable than the imine-amine tautomer (14). In
contrast, the intramolecular hydrogen bonding present in 17 significantly favors the
imine-amine isomer over the ene-diamine tautomer (18).
Aldimine coupling (AIC) is the nitrogen analogue of the benzoin condensation
and has been applied to dialdimines, providing the first examples of cyclizations effected
by cyanide-catalyzed AIC. Sodium cyanide promoted the facile, intramolecular
cyclization of several dialdimines in N,N-dimethylformamide, methanol, or
dichloromethane/water (phase-transfer conditions) yielding a variety of six-membered
heterocycles. Under aerobic conditions, an oxidative cyclization occurs to provide the
diimine heterocycle.
Cyanide-catalyzed aldimine coupling was employed as a new synthetic method
for oligomerization. Nine rigidly spaced dialdimines were oxidatively coupled under
aerobic conditions to yield conjugated oligoketimines and polyketimines with
unprecedented structure and molecular weight (DP = 2 - 23, ~700 -8200 g/mol). The ñ- diimine linkage was established based on IR spectroscopy, NMR spectroscopy, size
exclusion chromatography, and X-ray crystallographic characterization of the model
oxidized dimer of N-benzylidene-(p-phenoxy)-aniline. Cyclic voltammetry indicates ptype
electrical conductivity, suggesting they are promising candidates for plastic
electronic devices.
The cyanide-catalyzed benzoin condensation reaction of 4-substituted
benzaldehydes followed by oxidation to the diketone, and the Schiff Base condensation
of two equivalents of o-aminophenol provides 2,3-(4-X-phenyl)2-1,4-(2-
hydroxyphenyl)2-1,4-diazabutadiene. The ligand is given the moniker X-dabphol.
These ligands are readily metallated to form M-X-dabphol complexes. The copper
complexes catalytically fix CO2 with propylene oxide to yield propylene carbonate. DFT
studies along with a comparison with Hammet parameters help validate and elaborate on
the catalytic cycle and the catalytic results obtained. The nickel complex is competent
for olefin epoxidation. Synthesis, characterization, X-ray structure, DFT analysis, and
catalytic activity of the parent nickel dabphol complex are reported.
|
3 |
Total Synthesis of Natural Product Pterocarpans Useful as Selective Estrogen Receptor ModulatorsMalik, Neha January 2013 (has links)
No description available.
|
Page generated in 0.2921 seconds