Spelling suggestions: "subject:"berg river"" "subject:"berg liver""
21 |
Investigation of the sudden air release up the airshaft of the Berg river dam bottom outlet structure during emergency gate closure using numerical modelling methods / ThesisPulle, Doreen 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: The design of the Berg River Dam bottom outlet structure with multitude draw offs was based on various hydraulic model tests on a 1:40 model that was used for original design and a 1 in 20 physical model which was used to produce the final design. These tests indicated no foreseeable malfunction and showed that the 1.8 m² air vent would provide sufficient air flow to minimize the negative pressures that would develop behind the emergency gate during its closure or opening. However, during the first trial commissioning of the dam outlet structure, air was unexpectedly expelled through the air vent at a velocity so high that the recta-grids covering the shaft were blown to a height of over 3m while the gate was closing at a rate of approximately 0.0035 m/s. The air flow velocity up the air vent was approximately 45m/s and occurred when the gate was approximately 78% closed. A brief report on the test indicated that the source of air may have been a vortex formation in the vertical intake tower upstream of the emergency gate entraining air which was drawn through the gate and released up the air vent.
The purpose of this research was to utilize 3-dimensional numerical modelling employing Computational Fluid Dynamics (CFD) to carry out numerical simulations to investigate the above mentioned malfunction and thereby establishing whether the given hypotheses for the malfunction were valid. For purposes of validating the CFD modelling, a 1:14.066 physical model was constructed at the University of Stellenbosch hydraulics laboratory.
The 3-dimensional CFD model was used to investigate the said incident, using steady state simulations that were run for various openings of the emergency gate. The intenetion was to establish whether there was an emergency gate opening which would reproduce the air release phenomenon.
The results obtained from the numerical model showed a similar trend to those of the physical model although there were differences in values. Neither model, showed a sudden release of air through the vent. It was concluded that the unsteady air-water flow out of the air vent may have been caused by the variation of the discharge with time causing unbalanced negative pressures in the outlet structure. Therefore, it was recommended that further CFD transient simulations should be undertaken incorporating a moving emergency gate. / AFRIKAANSE OPSOMMING: Die ontwerp van die bodemuitlaat van die Bergrivierdam met multivlakuitlate is gebaseer op verskeie hidrouliese modeltoetse op a 1:40 fisiese model wat vir die oorspronklike ontwerp gebruik is, asook „n 1 tot 20 fisisiese model wat gebruik is om die finale ontwerp te lewer in 2003. Hierdie toetse het geen beduidende afwykings aangedui nie en het bewys dat die 1.8mª lugskag voldoende lugvloei sal toevoer om die negatiewe drukking wat stroomaf van die noodsluis ontstaan gedurende die sluitingsproses, sal minimaliseer. Gedurende die inlywingtoets in die veld in 2008 van die noodsluis, is lug onverwags teen 'n hoë snelheid deur die lugskag opwaarts uitgelaat, wat die rooster wat die skag beskerm teen 'n hoogte van oor 3m geblaas het terwyl die sluis teen 'n tempo van ongeveer 0.0035 m/s toegemaak het. Die lugvloeisnelheid in die lugskag was ongeveer 45m/s en het plaasgevind toe die sluis ongeveer 78% toe was. 'n Kort verslag oor die veldtoets dui aan dat die bron van die lug dalk werwelvorming in die vertikale inlaattoring stroomop van die noodsluis was, met lug wat deur die sluis getrek was en opwaarts in die lugskag vrygelaat is.
Die doel van die navorsing was om drie-dimensionele numeriese modellering met rekenaar vloeidinamika (RVD) te benut om numeriese similasies uit te voer om die bogenoemde abnormale werking van die lugskag te ondersoek en daarmee vas te stel of die gegewe aannames van krag is. Vir die doel om die RVD modellering te verifieer is 'n 1:14.066 fisiese model gebou by die Universiteit van Stellenbosch se waterlaboratorium.
Die 3-dimensionele RVD model is gebruik om die genoemde probleem te ondersoek, deur stasionêre simulasies wat vir verskillende openinge van die noodsluis geloop is te gebruik. Die doel was om vas te stel of daar 'n spesifieke noodsluisopening is wat die vrylating van die lug veroorsaak het.
Die uitslag verkry deur die numeriese model het dieselfde windrigting soos die van die fisiese model gewys, alhoewel daar verskille in die waardes was. Nie een van die modelle het .n skielike vrystelling van lug deur die lugskag gewys nie. 'n Afleiding is gemaak dat die nie stasionêre lug-water vloei uit die lugskag moontlik veroorsaak was deur die verandering van die vloei met tyd veroorsaak deur ongebalanseerde negatiewe druk in die uitlaatstruktuur. Daarom is daar voorgestel dat verdere RVD nie stasionêre simulasies gedoen word met 'n bewegende noodsluis.
|
22 |
Water- en soutbalanse van geselekteerde besproeide gronde van die benede Bergrivier opvanggebiedEngelbrecht, Hendrik Nicolaas 04 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: A study was conducted between 2000 and 2002 in the lower Berg River catchment of
the semi-arid Western Cape Province to investigate the effect of irrigation
developments (wheat fields to table grapes) on the quality of the Berg River as well as
the sustainability of these developments. This study was necessitated by the
mineralisation of both the Breede and Berg River, probably due to irrigation together
with the higher pressure on these water resources from the growing demand for fresh
water from the Cape Town metropolitan area.
Water and Salt balances of two dominant soil patterns (Glenrosa/Swartland and
Oakleaf/Hutton soil forms) from the catchment area were monitored at two localities.
Vineyard blocks of different ages in the same soil forms were used to study the effect
of irrigation over time. The electrical conductivity of the soil water extracts (ECe) was
measured three times over depth at the selected sites and the quality of irrigation and
drainage return-flow were monitored. Soil water storing capacities of these stony
(high rough fragment' fractions) soils were also characterised for more efficient
drainage quantity prediction.
Glenrosa/Swartland soils showed the highest ECe's (200-400 mx.m") that decreased
significantly after four to five years of irrigation and distribution became more
uniform over depth. These high salt concentrations were explained due to natural
occurrence of salts, mineral weathering and salts from the irrigation water.
Oakleaf/Hutton soils showed lower ECe's « 200 nfS.m") but they are subject to the
quality of the irrigation water, which is not that constant over years. Localised salt
accumulation was observed due to the irrigation method and became more prominent
over years. Drainage quantities were under predicted because of the big/high rough
fragment fractions and the occurrence of preferential-flow. This prohibited the
accurate calculation of the soil water house holding characteristics. It also led to the
under calculation of salt return-flow, but it was very evident that the most salt retumflow
occurred from the Glenrosa/Swartland soils. Effective irrigation management to
achieve and maintain optimal soil water levels and to reduce the negative impact of
high ECe's is essential for the sustainability of these irrigation developments. At
present it does not seem that the irrigation return-flow is causing dramatic
mineralisation of the lower Berg River, but it is a situation that must be monitored as
the developments extent and become older (come into production). It seems that
irrigation return-flow only has an influence on the quality of the river at the beginning
of such a development, but after about three years the influence directly correlates
with the quality of irrigation water and mineral weathering. / AFRIKAANSE OPSOMMING: 'n Studie is gedurende die jare 2000 tot 2002 in die benede Bergrivier opvanggebied
van die semi-ariede Wes-Kaap Provinsie gedoen om die effek van
besproeiingsontwikkelings (koringlande na tafeldruiwe) op die kwaliteit van die
Bergrivier se water, asook die volhoubaarheid van besproeiingslandbou te ondersoek.
Hierdie studie was genoodsaak deur toenemende versouting van beide die Breede- en
Bergrivier, waarskynlik a.g.v. besproeiing, tesarne met groter druk op hierdie
waterbronne van wee die groeiende aanvraag na vars water deur die Kaapstadse
metropool.
Water- en soutbalanse van twee dominante grondpatrone (Glenrosa/Swartland en
Oakleaf/Hutton grondvorms) binne die opvanggebied was by twee lokaliteite
gemoniteer. Wingerdblokke van verskillende ouderdomme binne dieselfde
grondvorms is gebruik om die effek van besproeiing oor tyd te ondersoek. Die
elektriese geleiding van die grondwaterekstrak (EGe) was drie maal op verskillende
dieptes by geselekteerde persele gemeet en die kwaliteit van besproeiingswater en
dreineringsterugvloei was deurgaans gemoniteer. Grondwaterstoringskapasiteite van
hierdie klipryke ( hoe 'growwe fragment fraksie) gronde was ook gekarakteriseer vir
meer doeltreffende voorspellings van dreineringshoeveelhede.
Glenrosa/Swartland gronde het die hoogste EGe's getoon (200-400 mx.m') wat na
vier tot vyf jaar se besproeiing aansienlik afgeneem het en meer uniform met diepte
versprei was. Die hoe soutkonsentrasies is veroorsaak deur die natuurlike voorkoms
van sout in die grond, minerale verwering en sout vanuit die besproeiingswater.
Oakleaf/Hutton gronde het laer EGe's getoon « 200 mS.m-I
), maar hierdie gronde se
soutinhoud is ook onderhewig aan die kwaliteit van die besproeiingswater en
dreinering wat oor jare nie baie konstant was en nog is nie. Gelokaliseerde
soutaansarneling tussen wingerdrye is ook waargeneem a.g.v. die besproeiingsmetode
en dit word meer prominent oor jare. Dreineringshoeveelhede was onder-voorspel
a.g.v. die groot/hoe growwe fragment fraksies en voorkoms van voorkeurvloei, wat
die akkurate modellering van grondwaterhuishouding beperk het. Dit het ook daartoe
gelei dat soutterugvloei ondervoorspel was, maar dit was duidelik dat die meeste
soutterugvloei vanuit die Glenrosa/Swartland gronde plaasvind. Effektiewe
besproeiingsbestuur, om optimale grondwaterpeile te handhaaf en om negatiewe
effekte van hoe EGe te beperk, is noodsaaklik vir die volhoubaarheid van hierdie tipe
besproeiingsontwikkelings. Tans blyk dit nie of besproeiingsterugvloei drarnatiese
versouting van die benede Bergrivier veroorsaak nie, maar dit is egter 'n situasie wat
deeglik gemoniteer moet word soos wat ontwikkelings uitbrei en ouer word (in
produksie kom). Besproeiingsterugvloei het dus net aan die begin van so 'n
ontwikkelling 'n invloed op die EG van die rivier, maar na ongeveer drie jaar hou die
invloed direk verband met die kwaliteit van die besproeiingswater en minerale
verwenng.
|
23 |
Investigation into the bacterial pollution in three Western Cape rivers, South Africa and the application of bioremediation strategies as clean-up technology /Paulse, Arnelia Natalie. January 2008 (has links)
Thesis (DTech (Biomedical Technology))--Cape Peninsula University of Technology, 2008. / Includes bibliographies. Also available online.
|
24 |
Investigation into the metal contamination of three rivers in the Western Cape and the subsequent application of a bioreactor system as remediation technology /Jackson, Vanessa Angela. January 2008 (has links)
Thesis (DTech (Biomedical Technology))--Cape Peninsula University of Technology, 2008. / Bibliography: leaves 208-236. Also available online.
|
25 |
Investigation into the bacterial pollution in three Western Cape rivers, South Africa and the application of bioremediation strategies as clean-up technologyPaulse, Arnelia Natalie January 2008 (has links)
Thesis submitted in fulfilment of the requirements for the degree
Doctor of Technology: Biomedical Technology
in the Faculty of Health and Wellness Sciences
at the Cape Peninsula University of Technology
2008 / The quality of South Africa’s water sources is fast deteriorating due to an influx of
pollutants from industrial and agricultural areas. In addition, urbanisation has led to
the establishment of informal settlements along river systems. This study focuses on
the importance of maintaining water quality and the management of water resources
in order to ensure its sustainability in South Africa. The primary aim of this study was
to determine the extent of bacterial contamination in three rivers namely the Berg-,
Plankenburg- and Diep Rivers in the Western Cape, South Africa and to investigate
the application of a bioremediation system as a possible treatment technology.
Several aspects contributing to the contamination were addressed and different
approaches were studied and reviewed. In all three rivers, four sampling sites were
identified, which were sampled over a period of 9 to 12 months.
Contamination levels for the three rivers were evaluated by applying various
enumeration techniques, which could provide an accurate indication of the planktonic
bacterial pollution load in the river systems. The Most Probable Number (MPN)
technique was used to determine the level of faecal coliforms and E. coli. The
highest MPN, faecal coliform and E. coli counts of 3.5 x 107 micro-organisms/100 m ,
3.5 x 107 micro-organisms/100 m and 1.7 x 107 micro-organisms/100 m ,
respectively, were recorded at Site B2 in week 37 in the Berg River. Results showed
that in all the river water sampled and evaluated, the total MPN count mostly
exceeded the maximum limit of 2000 micro-organisms/100 m (SABS, 1984)
stipulated for river water throughout the study period. The heterotrophic plate count
(HPC) method was used to determine the number of culturable micro-organisms in
planktonic samples, while the flow cytometry (FCM) and epifluorescence microscopy
(EM) with different fluorochromes (Acridine orange and BacLight™ Live/Dead stain)
were employed to evaluate total bacterial counts in planktonic (water) samples. The
highest HPC at the various sites sampled was 1.04 x 106 micro-organisms/m (Berg
River, Site B2), 7.9 x 104 micro-organisms/m (Plankenbrug River, Site A) and
1.7 x 105 micro-organisms/m (Diep River, Site B). Total cell counts as high as
3.7 x 107 micro-organism/m (Berg River, Site B2), 5.5 x 108 micro-organism/m
(Plankenburg River, Site D) and 2.5 x 109 micro-organisms/m (Diep River, Site B)
were obtained by the FCM technique, which were significantly (p < 0.05) higher than
the total counts obtained by epifluorescence microscopy. The results thus show that
the FCM technique was the most reliable method for determining the total cell count
in river water samples. This technique makes use of computer software whereas
epifluorescence microscopy involves manual counting which may lead to human
error. In addition, the impact of residential, agricultural and industrial areas situated
along these rivers was also investigated. Even though exact point sources of
pollution could not be determined, it was found that all the sources, such as the storm
water drainage pipes, the industrial as well as the agricultural areas, could contribute
to increased MPN, heterotrophic and total bacterial counts.
This study also aimed at investigating and comparing the microbial
contamination levels at various sites in the Plankenburg and Diep Rivers in the
Western Cape, South Africa. Sampling of sites along the Plankenburg River started
in June 2004 and continued for a period of one year until June 2005. Sampling of the
Diep River sites started in March 2005 and continued for a period of nine months until
November 2005. Faecal coliform (FC) and E. coli (EC) counts were determined by
means of the Most Probable Number technique, the number of culturable cells were
determined using the heterotrophic plate count (HPC) technique and total microbial
counts were evaluated by Flow cytometric analysis (FCM). The highest microbial
counts for the Plankenburg River were observed at site B where the highest MPN,
FC, E. coli and total FCM counts of 9.2 x 106 (week 14), 3.5 x 106 (week 39) and
3.5 x 106 micro-organisms/100 m (week 39) and 2.1 x 108 micro-organisms/m
(weeks 1 and 39) respectively, were recorded. The highest HPC recorded for the
Plankenburg River was 7.9 x 106 micro-organisms/100 m (week 44, site A). Site B
is situated close to an informal settlement where waste effluents from storm water
drainage pipes enter the river system. In addition, other possible contamination
sources included agricultural (site A) and industrial (site C) areas bordering the
Plankenburg River. The highest total MPN, FC and E. coli counts in the Diep River
were 5.4 x 106 (week 23) and 1.6 x 106 micro-organisms/100 m [FC and E. coli,
respectively (both in week 23)], recorded at site B. The highest HPC and total FCM
counts of 1.7 x 107 micro-organisms/100 m (week 14) and 2.5 x 109 microorganisms/
m (week 23), respectively, were also recorded at site B. This site was
identified as the most contaminated site along the Diep River and served as an
accumulation point for waste effluents from the residential and industrial areas, which
included paint and machine manufacturers. Other sources situated along the Diep
River included storage and maintenance facilities for steel containers, a waste water
treatment plant and an oil-refinery. Most of the bacterial counts obtained for the
Plankenburg and Diep Rivers exceeded the accepted maximum limit for river water
for most of the sampling period.
Bacterial species from the Berg- and Plankenburg Rivers were isolated and
identified. The presence of various Enterobacteriaceae species isolated at all the
sites in both rivers confirmed faecal contamination of these water sources over the
entire sampling period. Opportunistic pathogens such as Klebsiella sp., Serratia sp.,
Enterobacter sp., Shewanella sp., Aeromonas sp., Pseudomonas sp., Acinetobacter
sp. and Citrobacter freundii as well as pathogens such as Bacillus cereus and
B. anthracis were also identified in both river systems.
All the respective articles are presented in the required format of the journal in
which the article has been published or submitted to.
|
26 |
Investigation into the metal contamination of three rivers in the Western Cape and the subsequent application of a bioreactor system as remediation technologyJackson, Vanessa Angela January 2008 (has links)
Thesis submitted in fulfilment of the requirements for the degree
Doctor of Technology: Biomedical Technology
in the Faculty of Health and Wellness Sciences
at the Cape Peninsula University of Technology
2008 / River systems can become contaminated with micro-organisms and metals and the
routine monitoring of these rivers is essential to control the occurrence of these
contaminants in water bodies. This study was aimed at investigating the metal
contamination levels in the Berg-, Plankenburg- and Diep Rivers in the Western Cape,
South Africa, followed by the remediation of these rivers, using bioreactor systems.
Sampling sites were identified and samples [water, sediment and biofilm (leaves,
rocks and glass, etc.)] were collected along the Berg- and Plankenburg Rivers from May
2004 to May 2005 and for the Diep River, from February 2005 to November 2005. The
concentrations of aluminium (Al), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni),
lead (Pb) and zinc (Zn) were determined using the nitric acid digestion method and
analysed by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES).
For the Berg River, the highest concentrations in water samples were recorded
for Al, Mn and Fe at the agricultural area (Site A – chapter 2). In the sediment and
biofilm samples, the highest metal concentrations were once again recorded for Al and
Fe. The concentrations of Al and Fe were significantly higher (p < 0.05) than than Cu,
Zn, Pb, Ni and Mn in water, sediment and biofilm samples, and were mostly higher than
the quality guidelines recommended by the Department of Water Affairs and Forestry
(DWAF, 1996) and the Canadian Council for the Ministers of the Environment (CCME,
2001). Possible sources of contamination in the Berg River could be due to the leaching
or improper discarding of household waste from the informal- and established residential
areas, as well as the improper discarding of pesticides at the agricultural area.
For both the Plankenburg and Diep Rivers the Al and Fe concentrations were
higher than all the other metals analysed for in sediment and water samples. The
highest concentrations recorded in the Plankenburg River was 13.6 mg.l-1 (water - Week
18, Site B) and 15 018 mg.kg-1 (sediment - Week 1, Site C) for Al and 48 mg.l-1 (water -
Week 43, Site A) and 14 363.8 mg.kg-1 (sediment - Week 1, Site A) for Fe. The highest
concentrations recorded in the Diep River was 4 mg.l-1 (water - Week 1, Site A) and
19 179 mg.kg-1 (sediment - Week 1, Site C) for Al and 513 mg.l-1 (water - Week 27, Site
A) and 106 379.5 mg.kg-1 (sediment - Week 9, Site C) for Fe. For most of the metals
analysed the concentrations were higher than the recommended water quality
guidelines as stipulated by the Department of Water Affairs and Forestry (DWAF,
1996b), the Canadian Council for the Ministers of the Environment (CCME, 2001) and
the ‘World average’ (Martin and Windom, 1991). Point sources of pollution could not
conclusively be identified, but the industrial and residential areas could have influenced
the increased concentrations. Metal concentrations should be routinely monitored and
the guidelines should be updated and revised based on the current state of the rivers
and pollution influences.
Micro-organisms isolated from flow cells after exposure to varying metal
concentrations were investigated for possible metal-tolerance. A site where high metal
concentrations were recorded along the Plankenburg River was investigated. The
micro-organisms isolated from the flow cells were cultured and identified using the
Polymerase Chain Reaction (PCR) technique, in conjunction with universal 16SrRNA
primers. The phylogeny of the representative organisms in GenBank, were analysed
using the Neighbour-joining algorithm in Clustal X. After exposure, the channels were
stained with the LIVE/DEAD BacLightTM viability probe and visualised using
Epifluorescence Microscopy. The results revealed that when exposed to the highest
concentrations of Al (900 mg.l-1), Fe (1000 mg.l-1), Cu (10 mg.l-1) and Mn (80 mg.l-1), the
percentage of dead cells increased, and when exposed to the lowest concentrations of
Al (10 mg.l-1), Cu (0.5 mg.l-1), Mn (1.5 mg.l-1) and Zn (0.5 mg.l-1), no significant
differences could be distinguished between live an dead cells. When exposed to the
highest concentrations of Zn (40 mg.l-1) and Ni (20 mg.l-1), no significant differences
between the live and dead cell percentages, were observed. The phylogenetic tree
showed that a diverse group of organisms were isolated from the flow cells and that
some of the isolates exhibited multiple metal resistance (Stenotrophomonas maltophilia
strain 776, Bacillus sp. ZH6, Staphylococcus sp. MOLA:313, Pseudomonas sp. and
Delftia tsuruhatensis strain A90 exhibited tolerance to Zn, Ni, Cu, Al, Fe), while other
isolates were resistant to specific metals (Comamonas testosteroni WDL7,
Microbacterium sp. PAO-12 and Sphingomonas sp. 8b-1 exhibited tolerance to Cu, Ni
and Zn, respectively, while Kocuria kristinae strain 6J-5b and Micrococcus sp. TPR14
exhibited tolerance to Mn).
The efficiency of two laboratory-scale and one on-site bioreactor system was
evaluated to determine their ability to reduce metal concentrations in river water
samples. The laboratory-scale bioreactors were run for a two-week and a three-week
period and the on-site bioreactor for a period of ten weeks. Water (all three bioreactors)
and bioballs (bioreactor two and on-site bioreactor) were collected, digested with 55%
nitric acid and analysed using ICP-AES. The final concentrations for Al, Ni and Zn
(bioreactor one) and Mn (bioreactor two), decreased to below their recommended
concentrations in water samples. In the on-site, six-tank bioreactor system, the
concentrations for Fe, Cu, Mn and Ni decreased, but still exceeded the recommended
concentrations. The concentrations recorded in the biofilm suspensions removed from
the bioballs collected from bioreactor two and the on-site bioreactor, revealed
concentrations higher than those recorded in the corresponding water samples for all
the metals analysed, except Fe. The bioballs were shown to be efficient for biofilm
attachment and subsequent metal accumulation. The species diversity of the organisms
isolated from the bioreactor (bioreactor two) experiment after three days (initial) differed
from the organisms isolated after 15 days (final). Hydrogenophaga sp., Ochrobactrum
sp, Corynebacterium sp., Chelatobater sp. and Brevundimonas sp. were present only at
the start of the bioreactor experiment. The surviving populations present both in the
beginning and at the end of the bioreactor experiment belonged predominantly to the
genera, Pseudomonas and Bacillus. Metal-tolerant organisms, such as Bacillus,
Pseudomonas, Micrococcus and Stenotrophomonas, amongst others, could possibly be
utilised to increase the efficiency of the bioreactors. The bioreactor system should
however, be optimised further to improve its efficacy.
|
27 |
Comparison of diagnostic tools and molecular based techniques for the rapid identification of Escherichia coli and coliforms in contaminated river waterNdlovu, Thando January 2013 (has links)
Thesis submitted in fulfilment of the requirements for the degree
Master of Technology: Environmental Health
in the Faculty of Applied Sciences
at the Cape Peninsula University of Technology, 2013 / Water is an important daily requirement and in a clean, pure form, it promotes health and well-being. In addition to South Africa being one of the driest countries in the world, water availability is also being compromised by massive pollution of remaining water sources. The Berg- and Plankenburg Rivers are two of the surface water sources in the Western Cape, South Africa, which are highly polluted by sewage, industrial and agricultural run-off. The current investigation was aimed at comparing diagnostic tools, which are employed by municipalities and food industries, and molecular based techniques to routinely monitor water for indicator organisms in time- and cost-effective manner. These rivers were sampled twice a month (July 2010 to January 2011) at the sites closest to the informal settlements of Kayamandi in Stellenbosch (Plankenburg River) and Mbekweni in Paarl (Berg River).
The contamination levels of the two river systems were evaluated by the enumeration of Escherichia coli and coliforms using the Colilert 18® system, Membrane Filtration (MF) and Multiple Tube Fermentation (MTF) techniques. The highest faecal coliform count of 9.2 × 106 microorganisms/100 ml was obtained in weeks 21 and 28 from the Plankenburg River system by the MTF technique, while the lowest count of 1.1 × 103 microorganisms/100 ml was obtained in week one for both river systems by the MTF technique. The highest E. coli count of 1.7 × 106 microorganisms/100 ml was obtained from the Berg River system (week 9) using the MTF technique, while the lowest count of 3.6 × 102 microorganisms/100 ml was obtained by the MF technique from the Plankenburg River system. The coliform and E. coli counts obtained by the enumeration techniques thus significantly (p > 0.05) exceeded the guidelines of 2000 microorganisms/100 ml stipulated by the Department of Water Affairs and Forestry (DWAF, 1996) for water used in recreational purposes.
Overall the results obtained in this study showed that the water in the Berg- and Plankenburg River systems is highly polluted, especially where these water sources are used for irrigational and recreational purposes. For the coliform and E. coli counts obtained using the three enumeration techniques, it was noted that the MTF technique was more sensitive and obtained higher counts for most of the sampling weeks. However, the media (Membrane lactose glucuronide agar) used in the MF technique also effectively recovered environmentally stressed microbial cells and it was also better for the routine selection and growth of coliforms and E. coli. While E. coli and total coliforms were detected utilising the Colilert 18® system, accurate enumeration values for these two indicator groups was not obtained for the entire sampling period for both river systems. It has previously been shown that dilutions (up to 10-3) of highly polluted waters increase the accuracy of the Colilert 18® system to enumerate colifoms and E. coli in marine waters. As the results obtained utilising
the Colilert 18® system were also not comparable to the MF and MTF techniques it is recommended that highly polluted water samples be diluted to increase the accuracy of this system as a routine enumeration technique.
Water samples were directly inoculated onto MacConkey, Vile Red Bile (VRB) agar and the Chromocult Coliform agar (CCA) and single colonies were inoculated onto nutrient agar. Chromocult coliform agar proved to be more sensitive than MacConkey and VRB agar for the culturing of E. coli and coliforms. Preliminary identification of these colonies was done using the RapID ONE and API 20 E systems. The most isolated Enterobacteriaceae species by both systems, included Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli and Enterobacter cloacae in both river systems. The API 20 E system was more sensitive in the preliminary identification of the various isolates, as greater species diversity was obtained in comparison to the RapID ONE system.
The Polymerase Chain Reaction (PCR) was firstly optimised using positive Enterobacteriaceae species. The optimised method was then applied to the analysis of river water samples, which were centrifuged to harvest the bacterial cells, with DNA extracted using the boiling method. The extracted DNA was amplified using conventional PCR with the aid of species specific primers. The Enterobacteriaceae species that were detected throughout the study period in both river systems include Serratia marcescens, Escherichia coli, Klebsiella pneumoniae and Bacillus cereus. Conventional PCR was the most reliable and sensitive technique to detect Enterobacteriaceae to species level in a short period of time when compared to RapID ONE and the API 20 E systems. Multiplex PCR was optimised using the positive pathogenic E. coli strains namely, Enteropathogenic E. coli (EPEC), Enteroinvasive E. coli (EIEC), Enterohaemorrhagic E. coli (EHEC) and Enteroaggregative E. coli (EAEC). It was then employed in river water sample analysis and enabled the detection of EAEC, EHEC, and EIEC strains in Berg River system, with only the EAEC detected in the Plankenburg River system. Real-time PCR was used to optimise the multiplex PCR in the amplification of E. coli strains and successfully reduced the time to obtain final results when using control organisms. Real-time PCR was found to be more sensitive and time-effective in the identification of E. coli strains, and also more pronounced DNA bands were observed in real-time PCR products compared to conventional-multiplex PCR amplicons.
To sustain the services provided by the Berg- and Plankenburg Rivers in the Western Cape (South Africa), these water sources should frequently be monitored, results assessed and reported according to the practices acknowledged by responsible bodies. It is therefore recommended that the enumeration techniques be used in conjunction with the very sensitive PCR technique for the accurate detection of coliforms and E. coli in river water samples.
|
Page generated in 0.0789 seconds