• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distribuição da caspase-3 clivada no cerebelo de ratos durante o desenvolvimento em um modelo de hipóxia-isquemia sistêmica pré-natal / Distribution of cleaved caspase-3 in the developing rat cerebellum in a systemic prenatal hypoxia-ischemia model

Alan Pereira da Costa 05 March 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A Hipóxia-isquemia (HI) perinatal é um problema de saúde pública, e ocorrem aproximadamente 1,5 casos de encefalopatias por HI por 1000 nascidos vivos. Dos que sobrevivem 25-60% sofrem de deficiências permanentes do desenvolvimento neurológico, incluindo paralisia cerebral, convulsões, retardo mental, e dificuldade de aprender. Neurônios e oligodendrócitos, especialmente os progenitores, são os mais afetados pela HI. Existem vários modelos de HI, no entanto, poucos levam em consideração as intercorrências maternas, a importância da atividade placentária, e as trocas entre mãe-filho, que são clinicamente observadas em humanos. Robinson estabeleceu um modelo de HI sistêmica pré-natal transitório, onde o fluxo das artérias uterinas da rata grávida era obstruído por 45 minutos no décimo oitavo dia (E18) de gestação. Neste modelo foram observadas alterações que são similares às observadas em cérebros humanos que passaram por hipóxia perinatal, dentre as quais foram relatados aumento no nível de apoptose. Caspase-3 é descrita como uma enzima que atua na apoptose, e é amplamente utilizada como marcador para células apoptóticas. Vários autores vêm mostrando, entretanto, que a enzima caspase-3 pode estar ativada para fins não apoptóticos. No modelo de HI sistêmica pré-natal, foram observados astrogliose na substância branca, morte de oligodendrócitos, lesão em axônios tanto na substância branca como no córtex cerebral, e danos motores. Pouco se sabe da influencia do insulto HI no desenvolvimento do cerebelo, considerando que o cerebelo junto com o córtex motor, contribui para o controle motor. O objetivo desse trabalho foi avaliar a distribuição da caspase-3 clivada durante o desenvolvimento do cerebelo em um modelo de HI pré-natal. Os resultados deste trabalho demonstram que as células caspase-3 clivadas apresentaram duas morfologias distintas em ambos os grupos. Uma onde a caspase-3 foi observada apenas no núcleo, oscilando entre células com imunorreatividade fraca a intensa, e de células com a presença da caspase-3 no corpo celular, nos prolongamentos condensados e presença de fragmentos ao redor do soma, morfologia típica de célula em apoptose. A HI pré-natal, assim como nos hemisférios cerebrais, levou ao aumento de células caspase-3 clivadas com morfologia de progenitores de oligodendrócitos no cerebelo do grupo HI em P2, mas não em P9 e P23. Também foi demonstrado que a HI pré-natal não levou a uma ativação da apoptose em oligodendrócitos, neurônios e microglia (identificados por seus respectivos marcadores, CNPase, NeuN e ED1) apresentando marcação no núcleos de células GFAP+, na substância branca, camada granular e nas células da glia de Bergmann, em P9 e P23 no cerebelo. Podemos concluir que a HI pré-natal aumentou o número de células imunorreativas para a caspase-3 em um período crítico do desenvolvimento da oligodendroglia no cerebelo, e que a diminuição de progenitores de oligodendrócitos no cerebelo decorrente do insulto pré-natal visto em trabalhos anteriores, pode estar relacionada a morte celular por apoptose, embora não se possa descartar a hipótese da participação dessas células que apresentam caspase-3 clivada em outros eventos não apoptóticos desencadeados pela hipóxia-isquemia. / Perinatal hypoxia ischemia (HI) is a public health problem: about 1.5 cases of encephalopathy occurred per 1000 newborn alive. Those who survive 25-60% suffered permanent deficiencies in neurological development, including cerebral palsy seizures, mental retardation and learning difficulties. Neurons and oligodendrocytes, especially the progenitors were the more affected in an HI insult. There are many HI models; however, few of them taken in account the maternal status, the placental activity and the transport of substances between mother and fetus that are clinically observed in humans. Robinson described a model of transitory prenatal systemic HI, in that uterine arteries were clamped for 45 minutes in the eighteenth gestational day (E18). In this model many impairments very similar to those observed in human brain that suffered HI were showed, between them the increase in apoptosis levels. Caspase-3 is related to apoptosis and is largely used as a marker for apoptotic cells. However, many authors have shown that caspase-3 activation may be related not only with apoptosis. In the prenatal systemic HI model were observed white matter astrogliosis, oligodendroglial death, axonal lesion both in white matter as in cerebral cortex as also motor deficits. Little is known about the effects of HI insult in developing cerebellum, which is a region that, together with motor cortex, participates in motor control. The aim of this work was to evaluate cleaved caspase-3 distribution during cerebellar development in a model of prenatal HI. Our results showed that cleaved caspase-3 positive cells showed two different pattern of distribution in both groups. One of them where the caspase-3 was observed only in the nucleus, presenting both low or intense immunoreactivity, and another one presenting the caspase-3 distributed in the cell bodies and in the condensed processes as also the presence of fragments around the soma, a typical morphology of apoptotic cell. Prenatal HI, as also in the cerebral hemispheres leads to an increase in the number of cleaved caspase-3 positive cells that showed oligodendroglial progenitor cell phenotype in the P2 cerebellum, but not in P9 or P23, in HI group. It was also showed that prenatal HI do not leads to Caspase-3 distribution in oligodendrocytes, neurons or microglia (identified by their respective markers, CNPase, NeuN and ED1) however is present in the nucleus of GFAP+ cells, in the white matter, granular layer and in Bergmann Glia at P9 an P23. We may conclude that prenatal HI increased the number of caspase-3 imunorreactive cells in a critical period for oligodendroglial differentiation in developing cerebellum, and that the oligodendroglial progenitors decrease previously showed in the cerebellum as consequence of HI insult may be related to apoptotic cell death, although we may not discard the hypothesis of caspase-3 immunoreactive cells may be related with non apoptotic events triggered by hypoxia-ischemia.
2

Distribuição da caspase-3 clivada no cerebelo de ratos durante o desenvolvimento em um modelo de hipóxia-isquemia sistêmica pré-natal / Distribution of cleaved caspase-3 in the developing rat cerebellum in a systemic prenatal hypoxia-ischemia model

Alan Pereira da Costa 05 March 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A Hipóxia-isquemia (HI) perinatal é um problema de saúde pública, e ocorrem aproximadamente 1,5 casos de encefalopatias por HI por 1000 nascidos vivos. Dos que sobrevivem 25-60% sofrem de deficiências permanentes do desenvolvimento neurológico, incluindo paralisia cerebral, convulsões, retardo mental, e dificuldade de aprender. Neurônios e oligodendrócitos, especialmente os progenitores, são os mais afetados pela HI. Existem vários modelos de HI, no entanto, poucos levam em consideração as intercorrências maternas, a importância da atividade placentária, e as trocas entre mãe-filho, que são clinicamente observadas em humanos. Robinson estabeleceu um modelo de HI sistêmica pré-natal transitório, onde o fluxo das artérias uterinas da rata grávida era obstruído por 45 minutos no décimo oitavo dia (E18) de gestação. Neste modelo foram observadas alterações que são similares às observadas em cérebros humanos que passaram por hipóxia perinatal, dentre as quais foram relatados aumento no nível de apoptose. Caspase-3 é descrita como uma enzima que atua na apoptose, e é amplamente utilizada como marcador para células apoptóticas. Vários autores vêm mostrando, entretanto, que a enzima caspase-3 pode estar ativada para fins não apoptóticos. No modelo de HI sistêmica pré-natal, foram observados astrogliose na substância branca, morte de oligodendrócitos, lesão em axônios tanto na substância branca como no córtex cerebral, e danos motores. Pouco se sabe da influencia do insulto HI no desenvolvimento do cerebelo, considerando que o cerebelo junto com o córtex motor, contribui para o controle motor. O objetivo desse trabalho foi avaliar a distribuição da caspase-3 clivada durante o desenvolvimento do cerebelo em um modelo de HI pré-natal. Os resultados deste trabalho demonstram que as células caspase-3 clivadas apresentaram duas morfologias distintas em ambos os grupos. Uma onde a caspase-3 foi observada apenas no núcleo, oscilando entre células com imunorreatividade fraca a intensa, e de células com a presença da caspase-3 no corpo celular, nos prolongamentos condensados e presença de fragmentos ao redor do soma, morfologia típica de célula em apoptose. A HI pré-natal, assim como nos hemisférios cerebrais, levou ao aumento de células caspase-3 clivadas com morfologia de progenitores de oligodendrócitos no cerebelo do grupo HI em P2, mas não em P9 e P23. Também foi demonstrado que a HI pré-natal não levou a uma ativação da apoptose em oligodendrócitos, neurônios e microglia (identificados por seus respectivos marcadores, CNPase, NeuN e ED1) apresentando marcação no núcleos de células GFAP+, na substância branca, camada granular e nas células da glia de Bergmann, em P9 e P23 no cerebelo. Podemos concluir que a HI pré-natal aumentou o número de células imunorreativas para a caspase-3 em um período crítico do desenvolvimento da oligodendroglia no cerebelo, e que a diminuição de progenitores de oligodendrócitos no cerebelo decorrente do insulto pré-natal visto em trabalhos anteriores, pode estar relacionada a morte celular por apoptose, embora não se possa descartar a hipótese da participação dessas células que apresentam caspase-3 clivada em outros eventos não apoptóticos desencadeados pela hipóxia-isquemia. / Perinatal hypoxia ischemia (HI) is a public health problem: about 1.5 cases of encephalopathy occurred per 1000 newborn alive. Those who survive 25-60% suffered permanent deficiencies in neurological development, including cerebral palsy seizures, mental retardation and learning difficulties. Neurons and oligodendrocytes, especially the progenitors were the more affected in an HI insult. There are many HI models; however, few of them taken in account the maternal status, the placental activity and the transport of substances between mother and fetus that are clinically observed in humans. Robinson described a model of transitory prenatal systemic HI, in that uterine arteries were clamped for 45 minutes in the eighteenth gestational day (E18). In this model many impairments very similar to those observed in human brain that suffered HI were showed, between them the increase in apoptosis levels. Caspase-3 is related to apoptosis and is largely used as a marker for apoptotic cells. However, many authors have shown that caspase-3 activation may be related not only with apoptosis. In the prenatal systemic HI model were observed white matter astrogliosis, oligodendroglial death, axonal lesion both in white matter as in cerebral cortex as also motor deficits. Little is known about the effects of HI insult in developing cerebellum, which is a region that, together with motor cortex, participates in motor control. The aim of this work was to evaluate cleaved caspase-3 distribution during cerebellar development in a model of prenatal HI. Our results showed that cleaved caspase-3 positive cells showed two different pattern of distribution in both groups. One of them where the caspase-3 was observed only in the nucleus, presenting both low or intense immunoreactivity, and another one presenting the caspase-3 distributed in the cell bodies and in the condensed processes as also the presence of fragments around the soma, a typical morphology of apoptotic cell. Prenatal HI, as also in the cerebral hemispheres leads to an increase in the number of cleaved caspase-3 positive cells that showed oligodendroglial progenitor cell phenotype in the P2 cerebellum, but not in P9 or P23, in HI group. It was also showed that prenatal HI do not leads to Caspase-3 distribution in oligodendrocytes, neurons or microglia (identified by their respective markers, CNPase, NeuN and ED1) however is present in the nucleus of GFAP+ cells, in the white matter, granular layer and in Bergmann Glia at P9 an P23. We may conclude that prenatal HI increased the number of caspase-3 imunorreactive cells in a critical period for oligodendroglial differentiation in developing cerebellum, and that the oligodendroglial progenitors decrease previously showed in the cerebellum as consequence of HI insult may be related to apoptotic cell death, although we may not discard the hypothesis of caspase-3 immunoreactive cells may be related with non apoptotic events triggered by hypoxia-ischemia.
3

Yes-Associated Protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ) Function in Normal Cerebellar Development and Medulloblastoma

Hughes, Lucinda Jane January 2016 (has links)
The Hippo signaling pathway was first discovered in Drosophila melanogaster and is involved in organ size control by regulating cell proliferation and apoptosis. This well conserved pathway is activated by various signal inputs, including cell-cell contact, mechanotransduction, and G-protein coupled receptors, with signals converging on the downstream effector protein Yap and its homologue Taz, which are transcriptional co-activators. When the Hippo pathway is activated, Yap/Taz are phosphorylated, leading to cytoplasmic retention and degradation, and diminishing their transcriptional activity. Yap has also been recently implicated as a potential oncogene, as it is upregulated and transcriptionally active in several tumor types. Furthermore, inhibiting Yap activity in various cancer models has been shown to revert cancer cells to a normal phenotype. Although the role of Yap has been described in several organ systems, there is a paucity of information about the function of Yap in the central nervous system. I investigated the function of Yap/Taz in the murine cerebellum to determine its significance during normal development and a potential role for Yap/Taz in medulloblastoma, a tumor that arises in the cerebellum. In Chapter 2, I describe the expression pattern of Yap from embryonic through adult stages in mice, and demonstrate the functional significance of Yap/Taz in different cell populations using conditional knockout mouse models. I show that Yap plays a significant role in cell fate determination as well as in cerebellar foliation: Yap is highly expressed in the ventricular zone and is required for the proper formation of ependymal cells, and is also strongly expressed in Bergmann glia (BG) during early developmental stages, where Yap, together with Taz, plays a significant role in cerebellar foliation. Furthermore, Yap/Taz-deficient BG exhibit migrational defects, as their cell bodies can be found mislocalized to the molecular layer (ML), rather than remaining tightly associated with Purkinje Cells (PCs) in the PC layer. BG support the health of PCs, and severely defective BG positioning eventually leads to a loss of PCs. However, although Yap is highly expressed in granule neuron progenitors (GNPs) during the rapid postnatal expansion stage, it does not appear to play a major role in proliferation of these cells as conditionally knocking-out Yap/Taz in GNPs does not alter their proliferative capacity. Our observations demonstrate that in the cerebellum, Yap has a novel function in glia that is required for the development of normal foliation and organization, but plays a minimal role in GNP proliferation. Importantly, I also show that the reduction of sphingosine-1-phosphate G-protein-coupled receptor (S1P1) signal transduction activates the upstream kinase Lats with concomitant increases of phosphorylated Yap as well as a reduction of the known Yap target connective tissue growth factor (CTGF). This study identifies a novel function of Yap/Taz in cerebellar glia that is required for the development of normal foliation and laminar organization with sphingosine-1-phosphate (S1P) signaling as a potential extracellular cue regulating Yap activity during cerebellar development. In Chapter 3, I present further support for the finding that Yap/Taz are not required for GNP proliferation in vivo by discussing the failure of Yap/Taz loss to rescue the Sonic-hedgehog (Shh) mediated medulloblastoma phenotype, in which GNPs are considered to be the tumor cell of origin. Furthermore, I provide evidence suggestive of a tumor suppressive function of Yap/Taz in the cerebellum. Together, previously unknown functions of Yap in the developing and malignant cerebellum are described, providing a foundation for future studies of Yap in the central nervous system (CNS). / Biomedical Sciences
4

Impact d'un épisode ischémique sur la glie de Bergmann / Impact of an Ischemic Episode on Bergmann Glial Cells

Helleringer, Romain 02 December 2015 (has links)
L’ischémie cérébrale est caractérisée par une interruption totale ou partielle de l’apport sanguine au cerveau, conduisant à une privation d’oxygène et de glucose pour les cellules du cerveau. La série de processus cellulaires qui sont déclenchées par une ischémie cérébrale sont nombreux et complexes. La réduction sévère d’oxygène et de glucose la diminution de la production d’ATP et un changement drastique de la concentration de K+, du pH intracellulaire et extracellulaire et de la production de lactate. La perturbation du métabolisme énergétique au sein des tissus ischémiés conduit rapidement à la dépolarisation membranaire et au relarguage de neurotransmetteurs dans le milieu extracellulaire. Dans le cervelet, l’impact d’un stress ischémique à largement été étudié sur les cellules de Purkinje, seule voie de sortie neuronale du cortex cérébelleux. Il a été montré que le glutamate, relargué par une surexcitation des fibres glutamatergique et par l’inversion des transporteurs du glutamate, est la cause principale de la dépolarisation anoxique des cellules de Purkinje. Cependant, la compréhension de la réponse astrocytaire et l’influence des astrocytes vis-à-vis de l’ischémie ne sont pas encore connu.La cellule de Bergmann est un astrocyte radiaire qui compose un réseau couplé électriquement, formant des interactions anatomiques et fonctionnelles complexes avec les neurones du cortex cérébelleux. En utilisant un modèle in vitro d’ischémie cérébrale, la privation d’oxygène et de glucose (OGD), plusieurs caractéristiques de base de la réaction astrocytaire à l'ischémie sont analysés. Des expériences en patch clamp et d’imagerie calcique sont réalisées sur tranche de cervelet adulte révélant la réponse de la glie de Bergmann à l’OGD par une dépolarisation progressive de la membrane, avec en parallèle une augmentation de calcium cytosolique soutenue. L’enregistrement apparié entre cellule de Purkinje et cellule de Bergmann révèle des différences importantes de réponse à l’OGD entre ces deux types cellulaires. De plus, nous avons mesuré les changements de la concentration de K+ extracellulaire durant l’OGD en utilisant des microélectrodes sensibles aux ions. Nos résultats montrent une corrélation importante entre la dynamique du K+ extracellulaire et la dépolarisation membranaire de la cellule de Bergmann au cours de l’OGD. / Cerebral ischemia is characterized by partial or total interruption of the blood supply to the brain resulting in glucose and oxygen deprivation to brain cells. The series of cellular processes that are unleashed by cerebral ischemia are complex. The severe reduction in oxygen and glucose induces decreases in ATP production and dramatic changes in extracellular K concentration, pH of intracellular and extracellular space and lactate production. The disruption of energy metabolism in the ischemic tissue rapidly lead to membrane depolarisation and neurotransmitters are released into the extracellular space. In the cerebellum, the impact of an ischemic stress has been extensively studied in Purkinje cells, the only neuronal output of the cerebellar cortex. It has been shown that glutamate released from overexcited fibers and from reversal of glutamate transporters, is the principal cause of the dramatic, anoxic depolarization in Purkinje cells. However a detailed understanding of the astrocytic response to cerebellar ischemia and the potential influence of astrocyte to ischemia outcome is still lacking.Bergmann glia (BG) are radial gial cells that form networks of electrically coupled cells underling complex anatomical and functional interactions with the neurons of the cerebellar cortex. Using an in vitro model of cerebral ischemia, the oxygen and glucose deprivation (OGD), several basic features of astrocytic reaction to ischemia are analyzed. Patch clamp and calcium imaging experiments performed in cerebellar slices from adult mice revealed that BG respond to OGD with a progressive membrane depolarisation that is paralleled with a sustained cytosolic calcium increase. Double patch-clamp recordings between Purkinje neurons and BG reveal different responses to OGD in these cell types. Furthermore, we measured extracellular potassium concentration changes during OGD by using ion-sensitive microelectrodes. Our results indicate an important correlation between the BG membrane depolarisation and the extracellular K dynamics during OGD.
5

More than a Metabolite: An Evaluation of the Potential Role of L-serine-O-phosphate as the Endogenous Agonist for the Group III Metabotropic Glutamate Receptors

Antflick, Jordan 20 August 2012 (has links)
The Group III metabotropic glutamate receptors (mGluR) are located presynaptically on axon terminals and act as autoreceptors and heteroreceptors by inhibiting neurotransmitter release. Much has been learned about these receptors through exogenous application of L-serine-O-phosphate (L-SOP), an endogenous amino acid derivative and known activator of the Group III mGluRs. We hypothesized that L-SOP is the endogenous co-agonist at the high affinity Group III mGluR, mGluR4. We found the EC50 of L-SOP at mGluR4 was 0.5 μM, and determined that the concentration of L-SOP in whole brain was approximately 5 μM. An immunocytochemical survey revealed that cells containing the enzymatic machinery necessary for L-SOP synthesis and metabolism were observed in two brain regions known to express mGluR4, namely, cerebellum and hippocampus. In the cerebellum, the L-SOP synthetic and metabolic enzymes were found in Bergmann glia and Purkinje cells, two cells which form a tripartite synapse with parallel fiber axon terminals where the mGluR4 subtype is exclusively expressed at high levels. In the hippocampus, the L-SOP metabolic enzyme was detected in young neurons emanating from the neurogenic subventricular zone. Attempts to raise endogenous levels of L-SOP by crippling the L-SOP metabolizing enzyme (phosphoserine phosphatase), over-expressing the L-SOP synthesizing enzyme (phosphoserine aminotransferase), or through dietary protein restriction, to study the effects on neurotransmission and neurodevelopment in the central nervous system (CNS) were unsuccessful, suggesting that the production of L-SOP remains stable despite manipulation of the synthetic and metabolic enzymes. Finally, the ability of L-SOP to modulate glutamate release from presynaptic terminals was examined in cerebellar synaptosomes. Co-incident activation of presynaptic mGluR4 and presynaptic GABAA receptors facilitated glutamate release, suggesting that simultaneous activation of parallel fibers and Bergmann glia may serve to enhance synaptic transmission. This observation expands the traditional view of Group III mGluRs acting solely as inhibitory autoreceptors. Taken together, these results provide compelling evidence to support the hypothesis that L-SOP is the endogenous agonist at mGluR4, and possibly other Group III mGluRs.
6

More than a Metabolite: An Evaluation of the Potential Role of L-serine-O-phosphate as the Endogenous Agonist for the Group III Metabotropic Glutamate Receptors

Antflick, Jordan 20 August 2012 (has links)
The Group III metabotropic glutamate receptors (mGluR) are located presynaptically on axon terminals and act as autoreceptors and heteroreceptors by inhibiting neurotransmitter release. Much has been learned about these receptors through exogenous application of L-serine-O-phosphate (L-SOP), an endogenous amino acid derivative and known activator of the Group III mGluRs. We hypothesized that L-SOP is the endogenous co-agonist at the high affinity Group III mGluR, mGluR4. We found the EC50 of L-SOP at mGluR4 was 0.5 μM, and determined that the concentration of L-SOP in whole brain was approximately 5 μM. An immunocytochemical survey revealed that cells containing the enzymatic machinery necessary for L-SOP synthesis and metabolism were observed in two brain regions known to express mGluR4, namely, cerebellum and hippocampus. In the cerebellum, the L-SOP synthetic and metabolic enzymes were found in Bergmann glia and Purkinje cells, two cells which form a tripartite synapse with parallel fiber axon terminals where the mGluR4 subtype is exclusively expressed at high levels. In the hippocampus, the L-SOP metabolic enzyme was detected in young neurons emanating from the neurogenic subventricular zone. Attempts to raise endogenous levels of L-SOP by crippling the L-SOP metabolizing enzyme (phosphoserine phosphatase), over-expressing the L-SOP synthesizing enzyme (phosphoserine aminotransferase), or through dietary protein restriction, to study the effects on neurotransmission and neurodevelopment in the central nervous system (CNS) were unsuccessful, suggesting that the production of L-SOP remains stable despite manipulation of the synthetic and metabolic enzymes. Finally, the ability of L-SOP to modulate glutamate release from presynaptic terminals was examined in cerebellar synaptosomes. Co-incident activation of presynaptic mGluR4 and presynaptic GABAA receptors facilitated glutamate release, suggesting that simultaneous activation of parallel fibers and Bergmann glia may serve to enhance synaptic transmission. This observation expands the traditional view of Group III mGluRs acting solely as inhibitory autoreceptors. Taken together, these results provide compelling evidence to support the hypothesis that L-SOP is the endogenous agonist at mGluR4, and possibly other Group III mGluRs.

Page generated in 0.2251 seconds