Spelling suggestions: "subject:"bernoulli distribution"" "subject:"bernoullis distribution""
1 |
Analýza síly testů hypotéz / Statistical tests power analysisKubrycht, Pavel January 2016 (has links)
This Thesis deals with the power of a statistical test and the associated problem of determining the appropriate sample size. It should be large enough to meet the requirements of the probabilities of errors of both the first and second kind. The aim of this Thesis is to demonstrate theoretical methods that result in derivation of formulas for minimum sample size determination. For this Thesis, three important probability distributions have been chosen: Normal, Bernoulli, and Exponential.
|
2 |
Modelos para análise de dados discretos longitudinais com superdispersão / Models for analysis of longitudinal discrete data in the presence of overdispersionFernanda Bührer Rizzato 08 February 2012 (has links)
Dados longitudinais na forma de contagens e na forma binária são muito comuns, os quais, frequentemente, podem ser analisados por distribuições de Poisson e de Bernoulli, respectivamente, pertencentes à família exponencial. Duas das principais limitações para modelar esse tipo de dados são: (1) a ocorrência de superdispersão, ou seja, quando a variabilidade dos dados não é adequadamente descrita pelos modelos, que muitas vezes apresentam uma relação pré-estabelecida entre a média e a variância, e (2) a correlação existente entre medidas realizadas repetidas vezes na mesma unidade experimental. Uma forma de acomodar a superdispersão é pela utilização das distribuições binomial negativa e beta binomial, ou seja, pela inclusão de um efeito aleatório com distribuição gama quando se considera dados provenientes de contagens e um efeito aleatório com distribuição beta quando se considera dados binários, ambos introduzidos de forma multiplicativa. Para acomodar a correlação entre as medidas realizadas no mesmo indivíduo podem-se incluir efeitos aleat órios com distribuição normal no preditor linear. Esses situações podem ocorrer separada ou simultaneamente. Molenberghs et al. (2010) propuseram modelos que generalizam os modelos lineares generalizados mistos Poisson-normal e Bernoulli-normal, incorporando aos mesmos a superdispersão. Esses modelos foram formulados e ajustados aos dados, usando-se o método da máxima verossimilhança. Entretanto, para um modelo de efeitos aleatórios, é natural pensar em uma abordagem Bayesiana. Neste trabalho, são apresentados modelos Bayesianos hierárquicos para dados longitudinais, na forma de contagens e binários que apresentam superdispersão. A análise Bayesiana hierárquica é baseada no método de Monte Carlo com Cadeias de Markov (MCMC) e para implementação computacional utilizou-se o software WinBUGS. A metodologia para dados na forma de contagens é usada para a análise de dados de um ensaio clínico em pacientes epilépticos e a metodologia para dados binários é usada para a análise de dados de um ensaio clínico para tratamento de dermatite. / Longitudinal count and binary data are very common, which often can be analyzed by Poisson and Bernoulli distributions, respectively, members of the exponential family. Two of the main limitations to model this data are: (1) the occurrence of overdispersion, i.e., the phenomenon whereby variability in the data is not adequately captured by the model, and (2) the accommodation of data hierarchies owing to, for example, repeatedly measuring the outcome on the same subject. One way of accommodating overdispersion is by using the negative-binomial and beta-binomial distributions, in other words, by the inclusion of a random, gamma-distributed eect when considering count data and a random, beta-distributed eect when considering binary data, both introduced by multiplication. To accommodate the correlation between measurements made in the same individual one can include normal random eects in the linear predictor. These situations can occur separately or simultaneously. Molenberghs et al. (2010) proposed models that simultaneously generalizes the generalized linear mixed models Poisson-normal and Bernoulli-normal, incorporating the overdispersion. These models were formulated and tted to the data using maximum likelihood estimation. However, these models lend themselves naturally to a Bayesian approach as well. In this paper, we present Bayesian hierarchical models for longitudinal count and binary data in the presence of overdispersion. A hierarchical Bayesian analysis is based in the Monte Carlo Markov Chain methods (MCMC) and the software WinBUGS is used for the computational implementation. The methodology for count data is used to analyse a dataset from a clinical trial in epileptic patients and the methodology for binary data is used to analyse a dataset from a clinical trial in toenail infection named onychomycosis.
|
3 |
Modelos para análise de dados discretos longitudinais com superdispersão / Models for analysis of longitudinal discrete data in the presence of overdispersionRizzato, Fernanda Bührer 08 February 2012 (has links)
Dados longitudinais na forma de contagens e na forma binária são muito comuns, os quais, frequentemente, podem ser analisados por distribuições de Poisson e de Bernoulli, respectivamente, pertencentes à família exponencial. Duas das principais limitações para modelar esse tipo de dados são: (1) a ocorrência de superdispersão, ou seja, quando a variabilidade dos dados não é adequadamente descrita pelos modelos, que muitas vezes apresentam uma relação pré-estabelecida entre a média e a variância, e (2) a correlação existente entre medidas realizadas repetidas vezes na mesma unidade experimental. Uma forma de acomodar a superdispersão é pela utilização das distribuições binomial negativa e beta binomial, ou seja, pela inclusão de um efeito aleatório com distribuição gama quando se considera dados provenientes de contagens e um efeito aleatório com distribuição beta quando se considera dados binários, ambos introduzidos de forma multiplicativa. Para acomodar a correlação entre as medidas realizadas no mesmo indivíduo podem-se incluir efeitos aleat órios com distribuição normal no preditor linear. Esses situações podem ocorrer separada ou simultaneamente. Molenberghs et al. (2010) propuseram modelos que generalizam os modelos lineares generalizados mistos Poisson-normal e Bernoulli-normal, incorporando aos mesmos a superdispersão. Esses modelos foram formulados e ajustados aos dados, usando-se o método da máxima verossimilhança. Entretanto, para um modelo de efeitos aleatórios, é natural pensar em uma abordagem Bayesiana. Neste trabalho, são apresentados modelos Bayesianos hierárquicos para dados longitudinais, na forma de contagens e binários que apresentam superdispersão. A análise Bayesiana hierárquica é baseada no método de Monte Carlo com Cadeias de Markov (MCMC) e para implementação computacional utilizou-se o software WinBUGS. A metodologia para dados na forma de contagens é usada para a análise de dados de um ensaio clínico em pacientes epilépticos e a metodologia para dados binários é usada para a análise de dados de um ensaio clínico para tratamento de dermatite. / Longitudinal count and binary data are very common, which often can be analyzed by Poisson and Bernoulli distributions, respectively, members of the exponential family. Two of the main limitations to model this data are: (1) the occurrence of overdispersion, i.e., the phenomenon whereby variability in the data is not adequately captured by the model, and (2) the accommodation of data hierarchies owing to, for example, repeatedly measuring the outcome on the same subject. One way of accommodating overdispersion is by using the negative-binomial and beta-binomial distributions, in other words, by the inclusion of a random, gamma-distributed eect when considering count data and a random, beta-distributed eect when considering binary data, both introduced by multiplication. To accommodate the correlation between measurements made in the same individual one can include normal random eects in the linear predictor. These situations can occur separately or simultaneously. Molenberghs et al. (2010) proposed models that simultaneously generalizes the generalized linear mixed models Poisson-normal and Bernoulli-normal, incorporating the overdispersion. These models were formulated and tted to the data using maximum likelihood estimation. However, these models lend themselves naturally to a Bayesian approach as well. In this paper, we present Bayesian hierarchical models for longitudinal count and binary data in the presence of overdispersion. A hierarchical Bayesian analysis is based in the Monte Carlo Markov Chain methods (MCMC) and the software WinBUGS is used for the computational implementation. The methodology for count data is used to analyse a dataset from a clinical trial in epileptic patients and the methodology for binary data is used to analyse a dataset from a clinical trial in toenail infection named onychomycosis.
|
4 |
Introduction to Probability TheoryChen, Yong-Yuan 25 May 2010 (has links)
In this paper, we first present the basic principles of set theory and combinatorial analysis which are the most useful tools in computing probabilities. Then, we show some important properties derived from axioms of probability. Conditional probabilities come into play not only when some partial information is available, but also as a tool to compute probabilities more easily, even when partial information is unavailable. Then, the concept of random variable and its some related properties are introduced. For univariate random variables, we introduce the basic properties of some common discrete and continuous distributions. The important properties of jointly distributed random variables are also considered. Some inequalities, the law of large numbers and the central limit theorem are discussed. Finally, we introduce additional topics the Poisson process.
|
Page generated in 0.0883 seconds