Spelling suggestions: "subject:"bernsteiniano"" "subject:"bernsteinian""
1 |
On Bernstein-Sato ideals and Decomposition of D-modules over Hyperplane ArrangementsKebede, Sebsibew January 2016 (has links)
No description available.
|
2 |
Equations fonctionnelles pour une fonction sur<br />un espace singulierTorrelli, Tristan 06 November 1998 (has links) (PDF)
Afin d'étendre à un cadre singulier des résultats de la théorie du polynôme de Bernstein-Sato, nous étudions ici les polynômes de Bernstein d'une fonction analytique f associée aux sections du module de cohomologie locale algébrique R à support une intersection complète locale X définie par un morphisme analytique g. En effet, il résulte de la construction algébrique des cycles évanescents que les racines de ces polynômes sont étroitement liées aux valeurs propres de la monodromie locale de f sur X.<br /><br />Après avoir donné des résultats sur les polynômes de Bernstein associés aux sections d'un D-Module holonome, nous faisons l'étude du cas g lisse à l'origine, puis f lisse et X hypersurface. Nous étudions ensuite l'existence de polynômes de Bernstein génériques et relatifs des sections de R associées à une déformation analytique, reliant ces questions à la géométrie d'espaces conormaux.<br /><br />Reprenant des idées de B. Malgrange, nous donnons ensuite une construction adaptée à l'étude des polynômes de Bernstein des sections de R lorsque les morphismes g et (f,g) définissent des intersections complètes à singularité isolée à l'origine. Cette construction impose notamment la quasi-homogénéité de g et nécessite des calculs d'annulateurs. Nous nous consacrons enfin aux calculs de polynômes de Bernstein basés sur ces résultats. Nous donnons d'abord un algorithme de calcul lorsque en plus des hypothèses adéquates, nous supposons que la partie initiale de f définit une singularité isolée sur X. Quand de plus f est quasi-homogène, nous obtenons des formules explicites. Nous terminons notre étude par des exemples de calculs lorsque X est un cône quadratique non dégénéré.
|
3 |
Bernstein--Sato Ideals and the Logarithmic Data of a DivisorDaniel L Bath (10724076) 05 May 2021 (has links)
We study a multivariate version of the Bernstein–Sato polynomial, the so-called Bernstein–Sato ideal, associated to an arbitrary factorization of an analytic germ <i>f - f</i><sub>1</sub>···<i>f</i><sub>r</sub>. We identify a large class of geometrically characterized germs so that the <i>D</i><sub>X,x</sub>[<i>s</i><sub>1</sub>,...,<i>s</i><sub>r</sub>]-annihilator of <i>f</i><sup>s</sup><sub>1</sub><sup>1</sup>···<i>f</i><sup>s</sup><sub>r</sub><sup>r</sup> admits the simplest possible description and, more-over, has a particularly nice associated graded object. As a consequence we are able to verify Budur’s Topological Multivariable Strong Monodromy Conjecture for arbitrary factorizations of tame hyperplane arrangements by showing the zero locus of the associated Bernstein–Sato ideal contains a special hyperplane. By developing ideas of Maisonobe and Narvaez-Macarro, we are able to find many more hyperplanes contained in the zero locus of this Bernstein–Sato ideal. As an example, for reduced, tame hyperplane arrangements we prove the roots of the Bernstein–Sato polynomial contained in [−1,0) are combinatorially determined; for reduced, free hyperplane arrangements we prove the roots of the Bernstein–Sato polynomial are all combinatorially determined. Finally, outside the hyperplane arrangement setting, we prove many results about a certain <i>D</i><sub>X,x</sub>-map ∇<sub><i>A</i></sub> that is expected to characterize the roots of the Bernstein–Sato ideal.
|
Page generated in 0.0585 seconds