Spelling suggestions: "subject:"berry's phase"" "subject:"terry's phase""
1 |
Geometric Phases in Classical and Quantum SystemsGodskesen, Simon January 2019 (has links)
We are accustomed to think the phase of single particle states does not matter. After all, the phase cancels out when calculating physical observables. However, the geometric phase can cause interference even in single particle states and can be measured. Berry’s phase is a geometric phase the system accumulates as its time-dependent Hamiltonian is subjected to closed adiabatic excursion in parameter space. In this report, we explore how Berry’s phase manifests itself in various fields of physics, both classical and quantum mechanical. The Hannay angle is a classical analogue to Berry’s phase and they are related by a derivative. The Aharonov-Bohm effect is a manifestation of Berry’s phase. Net rotation of deformable bodies in the language of gauge theory can be translated as a Berry phase. The well-known BornOppenheimer approximation is a molecular Aharonov-Bohm effect and is another manifestation of Berry’s Phase.
|
2 |
Control of optical polarization and spatial distribution in silicon waveguides using Berry's phasePatton, Ryan Joseph January 2021 (has links)
No description available.
|
3 |
Adiabatic Shortcut to Geometric Quantum Computation in Noiseless SubsystemsGregefalk, Anton January 2021 (has links)
Quantum computers can theoretically perform certain tasks which classical computers at realistic times could not. Operating a quantum computer requires precise control over the system, for instance achieved by adiabatic evolution, and isolation from the environment to retain coherence. This report combines these two, somewhat contradicting, error preventing techniques. To reduce the run-time a transitionless quantum driving algorithm, or, adiabatic shortcut, is employed. The notion of Noiseless Subsystems (NS), a generalization of decoherence free subspaces, are used for robustness against environmental decoupling, by creating logical qubits which act as a noiseless code. Furthermore, the adiabatic shortcut for the NS code is applied to a refocusing scheme (spin-echo) in order to remove the dynamical phase, sensitive to error propagation, so that only the Berry phase is effectively picked up. The corresponding Hamiltonian is explicitly derived for the only two cases of two-dimensional NS: N=3,4 qubits with total spin of j=1/2,0, respectively. This constitutes geometric quantum computation (GQC) enacting a universal single-qubit gate, which is also explicitly derived. / Kvantdatorer kan teoretiskt utföra vissa uppgifter som klassiska datorer vid realistiska tider inte kan. Att köra en kvantdator kräver exakt kontroll över systemet, till exempel genom adiabatisk utvecking, och isolering från omgiviningen för att behålla koherens. Denna rapport kombinerar dessa två, något motsägelsefulla, tekniker för felhantering. För att minska körtiden används en övergångsfri kvantkörningsalgoritm, också kallad adiabatisk genväg. Konceptet brusfria delsystem, en generalisering av dekoherensfria underrum, används för robusthet mot sammanflätning med omgivningen genom att skapa logiska kvantbitar som fungerar som en brusfri kod. Vidare tillämpas den adiabatiska genvägen för den brusfria koden på ett spinn-eko för att eliminera den dynamiska fasen, som är känslig för felpropagering, så att endast Berrys fas, som är okänslig för felpropagering, effektivt plockas upp. Motsvarande Hamiltonian härleds uttryckligen för de enda två fallen av tvådimensionella brusfria delsystem: 3 eller 4 kvantbitar med respektive totalspinn j = 1/2 och 0. Detta möjliggör beräkning med en geometrisk kvantdator baserad på en universell en-kvantbitsgrind, som också härleds explicit.
|
Page generated in 0.0479 seconds