• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Números primos e o Postulado de Bertrand

Ferreira, Antônio Eudes 01 August 2014 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-29T15:44:42Z No. of bitstreams: 1 arquivototal.pdf: 691607 bytes, checksum: 68ddd45857d5c0c6e60229a957089adf (MD5) / Approved for entry into archive by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-29T15:47:36Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 691607 bytes, checksum: 68ddd45857d5c0c6e60229a957089adf (MD5) / Made available in DSpace on 2017-08-29T15:47:36Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 691607 bytes, checksum: 68ddd45857d5c0c6e60229a957089adf (MD5) Previous issue date: 2014-08-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a study of prime numbers, how they are distributed, how many prime numbers are there between 1 and a real number x, formulas that generate primes, and a generalization to Bertrand's Postulate. Six proofs that there are in nitely many primes using reductio ad absurdum, Fermat numbers, Mersenne numbers, Elementary Calculus and Topology are discussed. / Este trabalho apresenta um estudo sobre os números primos, como estão distribu ídos, quantos números primos existem entre 1 e um número real x qualquer, fórmulas que geram primos, além de uma generalização para o Postulado de Bertrand. São abordadas seis demonstrações que mostram que existem in nitos números primos usando redução ao absurdo, Números de Fermat, Números de Mersenne, Cálculo Elementar e Topologia.

Page generated in 0.0926 seconds