• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • Tagged with
  • 192
  • 192
  • 191
  • 187
  • 181
  • 181
  • 181
  • 173
  • 72
  • 70
  • 52
  • 50
  • 46
  • 36
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Metric Temporal Description Logics with Interval-Rigid Names: Extended Version

Baader, Franz, Borgwardt, Stefan, Koopmann, Patrick, Ozaki, Ana, Thost, Veronika 20 June 2022 (has links)
In contrast to qualitative linear temporal logics, which can be used to state that some property will eventually be satisfied, metric temporal logics allow to formulate constraints on how long it may take until the property is satisfied. While most of the work on combining Description Logics (DLs) with temporal logics has concentrated on qualitative temporal logics, there has recently been a growing interest in extending this work to the quantitative case. In this paper, we complement existing results on the combination of DLs with metric temporal logics over the natural numbers by introducing interval-rigid names. This allows to state that elements in the extension of certain names stay in this extension for at least some specified amount of time.
152

Query Rewriting for DL-Lite with n-ary Concrete Domains: Extended Version

Baader, Franz, Borgwardt, Stefan, Lippmann, Marcel 20 June 2022 (has links)
We investigate ontology-based query answering (OBQA) in a setting where both the ontology and the query can refer to concrete values such as numbers and strings. In contrast to previous work on this topic, the built-in predicates used to compare values are not restricted to being unary. We introduce restrictions on these predicates and on the ontology language that allow us to reduce OBQA to query answering in databases using the so-called combined rewriting approach. Though at first sight our restrictions are different from the ones used in previous work, we show that our results strictly subsume some of the existing first-order rewritability results for unary predicates. / This is an extended version of a paper published in the proceedings of IJCAI 2017.
153

Using Ontologies to Query Probabilistic Numerical Data: Extended Version

Baader, Franz, Koopmann, Patrick, Turhan, Anni-Yasmin 20 June 2022 (has links)
We consider ontology-based query answering in a setting where some of the data are numerical and of a probabilistic nature, such as data obtained from uncertain sensor readings. The uncertainty for such numerical values can be more precisely represented by continuous probability distributions than by discrete probabilities for numerical facts concerning exact values. For this reason, we extend existing approaches using discrete probability distributions over facts by continuous probability distributions over numerical values. We determine the exact (data and combined) complexity of query answering in extensions of the well-known description logics EL and ALC with numerical comparison operators in this probabilistic setting. / This is an extended version of the article in: Proceedings of the 11th International Symposium on Frontiers of Combining Systems. This version has been revised based on the comments of the reviewers.
154

Temporal Query Answering in DL-Lite over Inconsistent Data

Bourgaux, Camille, Turhan, Anni-Yasmin 20 June 2022 (has links)
In ontology-based systems that process data stemming from different sources and that is received over time, as in context-aware systems, reasoning needs to cope with the temporal dimension and should be resilient against inconsistencies in the data. Motivated by such settings, this paper addresses the problem of handling inconsistent data in a temporal version of ontology-based query answering. We consider a recently proposed temporal query language that combines conjunctive queries with operators of propositional linear temporal logic and extend to this setting three inconsistency-tolerant semantics that have been introduced for querying inconsistent description logic knowledge bases. We investigate their complexity for DL-LiteR temporal knowledge bases, and furthermore complete the picture for the consistent case.
155

Terminological knowledge aquisition in probalistic description logic

Kriegel, Francesco 20 June 2022 (has links)
For a probabilistic extension of the description logic EL⊥, we consider the task of automatic acquisition of terminological knowledge from a given probabilistic interpretation. Basically, such a probabilistic interpretation is a family of directed graphs the vertices and edges of which are labeled, and where a discrete probabilitymeasure on this graph family is present. The goal is to derive so-called concept inclusions which are expressible in the considered probabilistic description logic and which hold true in the given probabilistic interpretation. A procedure for an appropriate axiomatization of such graph families is proposed and its soundness and completeness is justified.
156

Standard and Non-Standard Inferences in the Description Logic FL₀ Using Tree Automata

Baader, Franz, Gil, Oliver Fernández, Pensel, Maximilian 20 June 2022 (has links)
Although being quite inexpressive, the description logic (DL) FL₀, which provides only conjunction, value restriction and the top concept as concept constructors, has an intractable subsumption problem in the presence of terminologies (TBoxes): subsumption reasoning w.r.t. acyclic FL₀ TBoxes is coNP-complete, and becomes even ExpTime-complete in case general TBoxes are used. In the present paper, we use automata working on infinite trees to solve both standard and non-standard inferences in FL₀ w.r.t. general TBoxes. First, we give an alternative proof of the ExpTime upper bound for subsumption in FL₀ w.r.t. general TBoxes based on the use of looping tree automata. Second, we employ parity tree automata to tackle non-standard inference problems such as computing the least common subsumer and the difference of FL₀ concepts w.r.t. general TBoxes.
157

Contextualized Programs for Ontology-Mediated Probabilistic System Analysis

Dubslaff, Clemens, Koopmann, Patrick, Turhan, Anni-Yasmin 20 June 2022 (has links)
Modeling context-dependent systems for their analysis is challenging as verification tools usually rely on an input language close to imperative programming languages which need not support description of contexts well. We introduce the concept of contextualized programs where operational behaviors and context knowledge are modeled separately using domain-specific formalisms. For behaviors specified in stochastic guarded-command language and contextual knowledge given by OWL description logic ontologies, we develop a technique to efficiently incorporate contextual information into behavioral descriptions by reasoning about the ontology. We show how our presented concepts support and facilitate the quantitative analysis of context-dependent systems using probabilistic model checking. For this, we evaluate our implementation on a case study issuing a multi-server system.
158

Most specific consequences in the description logic EL

Kriegel, Francesco 20 June 2022 (has links)
The notion of a most specific consequence with respect to some terminological box is introduced, conditions for its existence in the description logic EL and its variants are provided, and means for its computation are developed. Algebraic properties of most specific consequences are explored. Furthermore, several applications that make use of this new notion are proposed and, in particular, it is shown how given terminological knowledge can be incorporated in existing approaches for the axiomatization of observations. For instance, a procedure for an incremental learning of concept inclusions from sequences of interpretations is developed.
159

Ontology-Based Query Answering for Probabilistic Temporal Data: Extended Version

Koopmann, Patrick 20 June 2022 (has links)
We investigate ontology-based query answering for data that are both temporal and probabilistic, which might occur in contexts such as stream reasoning or situation recognition with uncertain data. We present a framework that allows to represent temporal probabilistic data, and introduce a query language with which complex temporal and probabilistic patterns can be described. Specifically, this language combines conjunctive queries with operators from linear time logic as well as probability operators. We analyse the complexities of evaluating queries in this language in various settings. While in some cases, combining the temporal and the probabilistic dimension in such a way comes at the cost of increased complexity, we also determine cases for which this increase can be avoided. / This is an extended version of the article to appear in the proceedings of AAAI 2019.
160

From Horn-SRIQ to Datalog: A Data-Independent Transformation that Preserves Assertion Entailment: Extended Version

Carral, David, González, Larry, Koopmann, Patrick 20 June 2022 (has links)
Ontology-based access to large data-sets has recently gained a lot of attention. To access data e_ciently, one approach is to rewrite the ontology into Datalog, and then use powerful Datalog engines to compute implicit entailments. Existing rewriting techniques support Description Logics (DLs) from ELH to Horn-SHIQ. We go one step further and present one such data-independent rewriting technique for Horn-SRIQ⊓, the extension of Horn-SHIQ that supports role chain axioms, an expressive feature prominently used in many real-world ontologies. We evaluated our rewriting technique on a large known corpus of ontologies. Our experiments show that the resulting rewritings are of moderate size, and that our approach is more efficient than state-of-the-art DL reasoners when reasoning with data-intensive ontologies. / This is an extended version of the article to appear in the proceedings of AAAI 2019.

Page generated in 0.0742 seconds