• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • Tagged with
  • 192
  • 192
  • 191
  • 187
  • 181
  • 181
  • 181
  • 173
  • 72
  • 70
  • 52
  • 50
  • 46
  • 36
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Most Specific Generalizations w.r.t. General EL-TBoxes

Zarrieß, Benjamin, Turhan, Anni-Yasmin 20 June 2022 (has links)
In the area of Description Logics the least common subsumer (lcs) and the most specific concept (msc) are inferences that generalize a set of concepts or an individual, respectively, into a single concept. If computed w.r.t. a general EL-TBox neither the lcs nor the msc need to exist. So far in this setting no exact conditions for the existence of lcs- or msc-concepts are known. This report provides necessary and suffcient conditions for the existence of these two kinds of concepts. For the lcs of a fixed number of concepts and the msc we show decidability of the existence in PTime and polynomial bounds on the maximal roledepth of the lcs- and msc-concepts. The latter allows to compute the lcs and the msc, respectively.
32

Hybrid Unification in the Description Logic EL

Baader, Franz, Gil, Oliver Fernández, Morawska, Barbara 20 June 2022 (has links)
Unification in Description Logics (DLs) has been proposed as an inference service that can, for example, be used to detect redundancies in ontologies. For the DL EL, which is used to define several large biomedical ontologies, unification is NP-complete. However, the unification algorithms for EL developed until recently could not deal with ontologies containing general concept inclusions (GCIs). In a series of recent papers we have made some progress towards addressing this problem, but the ontologies the developed unification algorithms can deal with need to satisfy a certain cycle restriction. In the present paper, we follow a different approach. Instead of restricting the input ontologies, we generalize the notion of unifiers to so-called hybrid unifiers. Whereas classical unifiers can be viewed as acyclic TBoxes, hybrid unifiers are cyclic TBoxes, which are interpreted together with the ontology of the input using a hybrid semantics that combines fixpoint and descriptive semantics. We show that hybrid unification in EL is NP-complete and introduce a goal-oriented algorithm for computing hybrid unifiers.
33

Towards Parallel Repair Using Decompositions

Ma, Yue, Peñaloza, Rafael 20 June 2022 (has links)
Ontology repair remains one of the main bottlenecks for the development of ontologies for practical use. Many automated methods have been developed for suggesting potential repairs, but ultimately human intervention is required for selecting the adequate one, and the human expert might be overwhelmed by the amount of information delivered to her. We propose a decomposition of ontologies into smaller components that can be repaired in parallel. We show the utility of our approach for ontology repair, provide algorithms for computing this decomposition through standard reasoning, and study the complexity of several associated problems.
34

Complementation and Inclusion of Weighted Automata on Infinite Trees

Borgwardt, Stefan, Peñaloza, Rafael 16 June 2022 (has links)
Weighted automata can be seen as a natural generalization of finite state automata to more complex algebraic structures. The standard reasoning tasks for unweighted automata can also be generalized to the weighted setting. In this report we study the problems of intersection, complementation and inclusion for weighted automata on infinite trees and show that they are not harder than reasoning with unweighted automata. We also present explicit methods for solving these problems optimally.
35

Unification in the Description Logic EL w.r.t. Cycle-Restricted TBoxes

Baader, Franz, Borgwardt, Stefan, Morawska, Barbara 16 June 2022 (has links)
Unification in Description Logics (DLs) has been proposed as an inference service that can, for example, be used to detect redundancies in ontologies. The inexpressive Description Logic EL is of particular interest in this context since, on the one hand, several large biomedical ontologies are defined using EL. On the other hand, unification in EL has recently been shown to be NP-complete, and thus of significantly lower complexity than unification in other DLs of similarly restricted expressive power. However, the unification algorithms for EL developed so far cannot deal with general concept inclusion axioms (GCIs). This paper makes a considerable step towards addressing this problem, but the GCIs our new unification algorithm can deal with still need to satisfy a certain cycle restriction.
36

Undecidability of Fuzzy Description Logics

Borgwardt, Stefan, Peñaloza, Rafael 16 June 2022 (has links)
Fuzzy description logics (DLs) have been investigated for over two decades, due to their capacity to formalize and reason with imprecise concepts. Very recently, it has been shown that for several fuzzy DLs, reasoning becomes undecidable. Although the proofs of these results differ in the details of each specific logic considered, they are all based on the same basic idea. In this report, we formalize this idea and provide sufficient conditions for proving undecidability of a fuzzy DL. We demonstrate the effectiveness of our approach by strengthening all previously-known undecidability results and providing new ones. In particular, we show that undecidability may arise even if only crisp axioms are considered.
37

Solving Language Equations and Disequations Using Looping Tree Automata with Colors

Baader, Franz, Okhotin, Alexander 16 June 2022 (has links)
We extend previous results on the complexity of solving language equations with one-sided concatenation and all Boolean operations to the case where also disequations (i.e., negated equations) may occur. To show that solvability of systems of equations and disequations is still in ExpTime, we introduce a new type of automata working on infinite trees, which we call looping automata with colors. As applications of these results, we show new complexity results for disunification in the description logic FL₀ and for monadic set constraints with negation. We believe that looping automata with colors may also turn out to be useful in other applications. / A short version of this report has also appeared in Proceedings of LPAR-18, Springer LNCS 7180, 2012.
38

SAT Encoding of Unification in ELHR+ w.r.t. Cycle-Restricted Ontologies

Baader, Franz, Borgwardt, Stefan, Morawska, Barbara 16 June 2022 (has links)
Unification in Description Logics has been proposed as an inference service that can, for example, be used to detect redundancies in ontologies. For the Description Logic EL, which is used to define several large biomedical ontologies, unification is NP-complete. An NP unification algorithm for EL based on a translation into propositional satisfiability (SAT) has recently been presented. In this report, we extend this SAT encoding in two directions: on the one hand, we add general concept inclusion axioms, and on the other hand, we add role hierarchies (H) and transitive roles (R+). For the translation to be complete, however, the ontology needs to satisfy a certain cycle restriction. The SAT translation depends on a new rewriting-based characterization of subsumption w.r.t. ELHR+-ontologies.
39

A Goal-Oriented Algorithm for Unification in ELHR+ w.r.t. Cycle-Restricted Ontologies

Baader, Franz, Borgwardt, Stefan, Morawska, Barbara 16 June 2022 (has links)
Unification in Description Logics (DLs) has been proposed as an inference service that can, for example, be used to detect redundancies in ontologies. For the DL EL, which is used to define several large biomedical ontologies, unification is NP-complete. A goal-oriented NP unification algorithm for EL that uses nondeterministic rules to transform a given unification problem into solved form has recently been presented. In this report, we extend this goal-oriented algorithm in two directions: on the one hand, we add general concept inclusion axioms (GCIs), and on the other hand, we add role hierarchies (H) and transitive roles (R+). For the algorithm to be complete, however, the ontology consisting of the GCIs and role axioms needs to satisfy a certain cycle restriction.
40

Unification in the Description Logic ELHR+ without the Top Concept modulo Cycle-Restricted Ontologies: (Extended Version)

Baader, Franz, Fernandez Gil, Oliver 23 April 2024 (has links)
Unification has been introduced in Description Logic (DL) as a means to detect redundancies in ontologies. In particular, it was shown that testing unifiability in the DL EL is an NP-complete problem, and this result has been extended in several directions. Surprisingly, it turned out that the complexity increases to PSpace if one disallows the use of the top concept in concept descriptions. Motivated by features of the medical ontology SNOMED CT, we extend this result to a setting where the top concept is disallowed, but there is a background ontology consisting of restricted forms of concept and role inclusion axioms. We are able to show that the presence of such axioms does not increase the complexity of unification without top, i.e., testing for unifiability remains a PSpace-complete problem.

Page generated in 0.0762 seconds