Spelling suggestions: "subject:"betagalactosidase -- 2analysis."" "subject:"betagalactosidase -- 3analysis.""
1 |
Production and characterization of b-galactosidase from psychrotrophic Bacillus subtilisAbdelrahim, Khalid Ali January 1989 (has links)
No description available.
|
2 |
Biochemical and genomic analysis of -galactosidases from Bifidobacterium infantis HL96Hung, Ming-Ni, 1962- January 2001 (has links)
No description available.
|
3 |
Biochemical and molecular characterization of a [beta]-galactosidase from Bifidobacterium breve B24Yi, Sung Hun, 1971- January 2005 (has links)
No description available.
|
4 |
Production and characterization of b-galactosidase from psychrotrophic Bacillus subtilisAbdelrahim, Khalid Ali January 1989 (has links)
$ beta$-Galactosidase (E.C. 3.2.1.23) or lactase was produced by the growth of a selected Bacillus subtilis strain (KL88) which was adapted to grow at 10$ sp circ$C. The growth and enzyme production were maximal at 2% (w/v) lactose supplemented with 0.2% (w/v) yeast extract. A Fast Protein Liquid Chromatography system (FPLC) was used for $ beta$-galactosidase purification. The enzyme was purified to 44-fold over the crude extract with a recovery of $ sim$54%. Native-PAGE and SDS-PAGE using "PhastSystem" showed the presence of two isoenzymes having molecular weights of 88 and 170 kD. The purified enzyme showed high activity at low temperatures (10$ sp circ$C) and recorded an optimum pH of 7.0. The K$ sb{ rm m}$ values were found to be 2.21 mM and 28.08 mM for o-nitrophenyl-$ beta$-D-galactopyranoside (ONPG) and lactose, respectively. / $ beta$-Galactosidase from psychrotrophic Bacillus subtilis was specific to the $ beta$-D-glycosidic linkage normally present in lactose. / To investigate the possibility of producing proteinase-free $ beta$-galactosidase from this psychrotrophic microorganism, FPLC was used for the rapid separation of $ beta$-galactosidase.
|
5 |
Biochemical and genomic analysis of -galactosidases from Bifidobacterium infantis HL96Hung, Ming-Ni, 1962- January 2001 (has links)
Among 29 strains of bifidobacteria studied as sources of beta-galactosidase enzyme, Bifidobacterium infantis HL96 showed the highest hydrolytic and transgalactosylic activities. This strain grew well in a MRS medium containing various sugars including lactose, and produced three beta-galactosidases (termed beta-Gal I, II, III). / Two genes, beta-galI and beta-galIII, located on 4.6 and 4.4 kb DNA fragments respectively, were cloned into E. coli, and the nucleotide sequences were determined. The 3,069 by-long beta-galI, encoded a polypeptide with a Mr of 113 kDa. A putative ribosome-binding site and a promoter sequence were recognized at the 5' flanking region of beta-galI. A partial sequence of an ORF transcribing divergently from beta-galI resembled a lactose permease gene. The beta-galIII gene, which is 2,076 bp long, encoded a polypeptide with a Mr of 76 kDa. A rho-independent, transcription terminator-like sequence was found 25 bp downstream of the termination codon. / The amino acid sequences of beta-GalI and beta-GalIII were homologous to those in the LacZ and LacG families, respectively. The acid-base, nucleophilic, and substrate recognition sites conserved in the LacZ family were found in beta-GalI, and a possible acid-base site proposed for the LacG family was located in beta-GalIII, containing a glutamate at residue 160. beta-GalI and beta-GalIII were over-expressed 35 and 96 times respectively in E. coli by using a pET expression system. / Both beta-GalI and beta-GalIII were specific for beta-D -anomeric linked galactosides, but beta-GalI showed more hydrolytic and synthetic activities toward lactose than beta-GalIII. The galacto-oligosaccharides (GaOS) production mediated by beta-GalI at 37°C in 20% (w/v) lactose was 130 mg/ml, which is six times higher than that of beta-GalIII. The yield of GaOS further increased to 190 mg/ml in 30% (w/v) lactose. A major tri-saccharide produced by beta-GalI was characterized as O-beta- D-galactopyranosyl-(1-3)-O-beta-D-galactopyranosyl-(1-4)- D-glucopyranose. / beta-GalI was purified by ammonium sulphate precipitation, and anion-exchange (Mono-Q) and gel filtration (Superose 12) chromatographic steps. The enzyme appeared to be a tetramer, with a Mr of 470 kDa as estimated by native PAGE and gel-filtration chromatography. The optimum temperature and pH for ONPG and lactose as substrates were 60°C, pH 7.5, and 50°C, pH 7.5, respectively. The enzyme was stable over the pH range of 5~8.5, and was particularly active at 50°C for more than 80 min. The enzyme was significantly activated by reducing agents, especially glutathione, as well as by Na+ and K+ cations. Maximal activity required both Na+ and K+ at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, and by most bivalent metal ions. Hydrolytic activity using 20 mM lactose as substrate was significantly inhibited by 10 mM galactose. The Km and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. / The objectives of this research were to characterize beta-galactosidases of B. infantis HL96 at the molecular and biochemical levels, and to over-express the enzymes in Escherichia coli. Two beta-galactosidase isoenzymes with unique properties were genetically characterized for the first time. beta-GalI properties included a neutral pH optimum, relatively higher temperature stability and a high transgalactosylic activity that makes it very competitive for GaOS synthesis. The results were also important for the advancement of knowledge on the catalytic mechanism and the evolutionary aspect of this enzyme.
|
6 |
Biochemical and molecular characterization of a [beta]-galactosidase from Bifidobacterium breve B24Yi, Sung Hun, 1971- January 2005 (has links)
A beta-galactosidase gene from Bifidobacterium breve B24 which showed the higher hydrolytic and synthetic activity was cloned in E. coli. The complete beta-galactosidase gene contained 2076 bp nucleotides and encoded 691 amino acids which had a high homology to the other Bifidobacterium species. This beta-galactosidase was homologous to that of the LacA family. The galA gene was successfully over-expressed in E. coli ER2566. To observe any change in the recombinant enzyme, beta-galactosidases from Bifidobacterium breve B24 and recombinant E. coli ER2566 were purified to homogeneity by ion exchange chromatography (Mono-Q) and gel-filtration chromatography (Superose-12 and Superdex 200) columns. The molecular mass of both beta-galactosidases was estimated to be 75 kDa on SDS-PAGE. Activity staining on non-denaturing Native-PAGE and Superose-12 gel-filtration chromatography showed that the enzymes are composed of a dimer with a molecular mass of 150 kDa. / The optimum pHs of the native and recombinant enzymes for hydrolyzing O-nitrophenyl-beta-D-galactopyranose (ONPG) were pH 6.0 and 7.0, respectively, and they were stable over the pH range of 5-8 and 6-9, respectively. The optimum temperature of both enzymes for hydrolyzing ONPG was similar at 45 °C and they were stable over the temperature range of 20-45 °C. Both enzymes were stable up to 45 °C during 5 h of incubation at pH 6.5. The recombinant enzyme was slightly activated by bivalent metal ions, Mg2+, Mn2+, and Zn2+ at 1 mM but strongly inhibited by Hg2+ and p-chloromercuribenzoic acid (PCMB). The K m values of both native and recombinant beta-galactosidases for ONPG were 2.77 and 1.82 mM, respectively, and the Vmax values were 1.02 and 1.39 mM/min, respectively. / The two beta-galactosidase activities were also tested with lactose as substrate. The optimum pH of the native and recombinant enzymes for hydrolyzing lactose was similar at pH 6.0. Both enzymes had more than 80 % of their activity in the range of pH 6-8, indicating that the enzymes were stable at neutral pH. However, the native beta-galactosidase had around 40 % of its activity at pH 5.0, whereas the recombinant enzyme had no activity at this pH. On the other hand, the recombinant enzyme had over 50 % of its activity at pH 9.0, while the native beta-galactosidase showed lower than 5 % of its activity. The optimum temperature of both enzymes was at 45 °C. The profiles of both enzyme activities were very similar except at the temperature of 10 °C. The recombinant beta-galactosidase still had around 20 % of its enzyme activity at 10 °C, while no enzyme activity from the native enzyme was detected at this temperature.
|
Page generated in 0.0503 seconds