• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 5
  • 4
  • 3
  • Tagged with
  • 60
  • 60
  • 60
  • 50
  • 27
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Top-down and bottom-up excursions beyond the standard model : the example of left-right symmetries in supersymmetry

Alloul, Adam 20 September 2013 (has links) (PDF)
The field of high-energy physics has been living a very exciting period of its history with the Large Hadron Collider (LHC) at CERN collecting data. Indeed, this enormous machine able to collide protons at a center of mass energy of 14 TeV promises to unveil the mystery around the physics at such energy scales. From the physicists side, the expectations are very strong as it isnowadays a certitude that the Standard Model of particle physics is incomplete and should, in fact, be interpreted as the effective theory of a more fundamental one. Unfortunately, the 7 and 8 TeV runs of the LHC did not provide any sign of new physics yet but there has been at least one major discovery in 2010, namely the discovery of a scalar particle with a mass of 125 GeV and whichproperties are very close to those of the Standard Model Higgs boson. Since then, many questions have come up as we now want to understand if it really is the Standard Model Higgs boson or if it exhibits any deviations. It is in this peculiar context that my research work was carried. In a first project, we, my supervisors, our collaborator and I, have wanted to explore thephenomenology associated with the neutralinos and charginos sector of the left-right symmetric supersymmetric model. Such an analysis can be motivated by several reasons such as the fact that the supersymmetric nature of these models provides a natural explanation for the infamous hierarchy problem, implies the unification of the gauge coupling constants at very high energy and provides a natural candidate for dark matter. In addition to these nice features, the left-right symmetry introduces a natural framework for explaining the smallness of neutrino masses but also helps in addressing several other unresolved issues in the Standard Model framework. Only focusing on the lightest charginos and neutralinos decaying into one or more light leptons, we have shown in our study that these models can be easily discovered in multi-leptonic final states as theylead to signatures very different from those induced by the Standard Model or its supersymmetric version.[...]
42

Supersymmetry vis-à-vis Observation : Dark Matter Constraints, Global Fits and Statistical Issues

Akrami, Yashar January 2011 (has links)
Weak-scale supersymmetry is one of the most favoured theories beyond the Standard Model of particle physics that elegantly solves various theoretical and observational problems in both particle physics and cosmology. In this thesis, I describe the theoretical foundations of supersymmetry, issues that it can address and concrete supersymmetric models that are widely used in phenomenological studies. I discuss how the predictions of supersymmetric models may be compared with observational data from both colliders and cosmology. I show why constraints on supersymmetric parameters by direct and indirect searches of particle dark matter are of particular interest in this respect. Gamma-ray observations of astrophysical sources, in particular dwarf spheroidal galaxies, by the Fermi satellite, and recording nuclear recoil events and energies by future ton-scale direct detection experiments are shown to provide powerful tools in searches for supersymmetric dark matter and estimating supersymmetric parameters. I discuss some major statistical issues in supersymmetric global fits to experimental data. In particular, I further demonstrate that existing advanced scanning techniques may fail in correctly mapping the statistical properties of the parameter spaces even for the simplest supersymmetric models. Complementary scanning methods based on Genetic Algorithms are proposed. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted.
43

Étude des désintégrations B⁰(s)→D̅⁰K⁺K⁻ et des sous-modesB⁰(s)→D̅⁽*⁾⁰φavec le détecteur LHCb / Study of B⁰(s)→D̅⁰K⁺K⁻ decays and B⁰(s)→D̅⁽*⁾⁰φ channels with LHCb detector.

Déléage, Nicolas 14 October 2015 (has links)
L'expérience LHCb a été conçue pour étudier la physique des saveurs, dont entre autre la violation de CP, sur le collisioneur proton-proton LHC.La première phase de fonctionnement du LHC a durée de 2011 à 2012, ce qui a permis à LHCb de collecter $3.19~mathrm{fb}^{-1}$ de données à une énergie dans le centre de masse des collisions de $sqrt{s} = 7~TeV$ et $sqrt{s} = 8~TeV$.L'analyse présentée dans cette thèse est basée sur l'ensemble des données collectées par LHCb lors de la première phase de fonctionnement (2011-2012).Le mécanisme de Cabibbo-Kobayashi-Maskawa (CKM) est le mécanisme décrivant la violation de CP dans le cadre du Modèle Standard.Les expériences de la décennie précédente, dédiées à la physique des saveurs, BaBar et Belle, ont permis de démontrer le fonctionnement du mécanisme CKM et de démontrer qu'il est majoritairement Standard.`A présent LHCb a pour objectif de mesurer avec précision les paramètres de ce mécanisme, ce qui constitue des points de références du Modèle Standard, pour en parallèle rechercher de manière indirecte de la Nouvelle Physique en recherchant des déviations à ces points de références du Modèle Standard.Les travaux réalisés lors de cette thèse s'inscrivent dans le cadre du premier axe de recherche: réaliser des mesures de précision des paramètres du mécanisme CKM pour contraindre le Modèle Standard.Dans cette thèse nous réalisons la mesure la plus précise à l'heure actuelle du rapport d'embranchement de la désintégration ${B^0tobar{D}^0K^+K^-}$, la première observation des modes ${B^0_stobar{D}^0K^+K^-}$ et ${B^0_stobar{D}^{*0}phi}$ avec mesure de la polarisation de ce dernier, la confirmation de la mesure du rapport d'embranchement de la désintégration ${B^0_stobar{D}^0phi}$, ainsi que des limites supérieures sur le rapport d'embranchement de la désintégration ${B^0tobar{D}^0phi}$ et sur l'angle de mélange des mésons ${omega - phi}$.L'observation de ces modes ${B^0_{(s)}tobar{D}^0K^+K^-}$ et sous modes ${B^0_{(s)}tobar{D}^{(*)0}phi }$ permet de préparer les futures analyses de Dalitz de ces modes qui contribueront, en les combinant avec les autres méthodes, à améliorer la précision sur la mesure de la phase complexe $gamma$ du mécanisme CKM. / The LHCb experiment has been designed to study flavor physics, notably CP violation, on the LHC proton-proton collider.The first LHC run goes from 2011 to 2012, during what LHCb saved $3.19~mathrm{fb}^{-1}$ of data with a collision centre-of-mass energy at ${sqrt{s} = 7~TeV}$ and ${sqrt{s} = 8~TeV}$.The analysis presented in this thesis is based on a data sample corresponding to the full first run of the LHC (2011-2012).The Cabibbo-Kobayashi-Maskawa (CKM) mechanism describes CP violation in the Standard Model.In the previous decade, two dedicated experiments to flavor physics, BaBar and Belle, proved that the CKM mechanism is at work and dominated by Standard effects.Now LHCb aim is to improve precision on measurements of CKM parameters, in order to serves as the Standard Model reference points, to make in parallel indirect search of New Physics looking for deviations from the Standard Model reference points.Accurate measurements of CKM parameters through different processes provide sensitivity to new physics effects, by testing the global consistency of the Standard Model.This thesis is included inside the first LHCb aim: to improve CKM parameters measurements to constrain the Standard Model.This thesis reports the most precise measurement to date of the branching fraction of ${B^0tobar{D}^0K^+K^-}$ decay, the first observation of the decays ${B^0_stobar{D}^0K^+K^-}$ and ${B^0_stobar{D}^{*0}phi}$ with a polarization measurement for the second one, confirmation of the branching fraction measurement of ${B^0_stobar{D}^0phi}$, and upper limits on branching fraction of ${B^0tobar{D}^0phi}$ decay and on ${omega - phi}$ mixing angle.The observation of ${B^0_{(s)}tobar{D}^0K^+K^-}$ and ${B^0_{(s)}tobar{D}^{(*)0}phi }$ decays prepare the Dalitz analysis for these channels which will be used, combined with other methodes, to improve measurement on the $gamma$ complex-phase of the CKM mechanism.
44

Caractérisation du secteur de Higgs et aspects du problème de la saveur / Higgs sector characterization and aspects of the flavor puzzle

Bernon, Jérémy 16 September 2016 (has links)
Le Modèle Standard (MS) de la physique des particules s’est imposé comme étant la description la plus précise des interactions fondamentales entre les particules élémentaires. La découverte d’un boson de Higgs, avec une masse de 125 GeV, en Juillet 2012 au Large Hadron Collider (LHC), en a marqué sa confirmation définitive. Cependant, de nombreux problèmes observationnels et théoriques sont au coeur du MS, la plupart liés au secteur de Higgs. Etant une particule scalaire, le boson de Higgs souffre de très grandes corrections radiatives, ce qui déstabilise l’échelle électro-faible et mène au problème de hiérarchie. L’un des buts principaux du LHC est d’explorer précisément le secteur de Higgs, afin de caractériser le mécanisme à l’origine de la brisure de la symétrie électro- faible et de tester de possibles solutions au problème de hiérarchie. Le secteur de Higgs est également responsable de la génération des masses des fermions dans le MS, par le biais des couplages de Yukawa. Ces couplages sont extrêmement non génériques et cela mène aux problèmes de la saveur au delà du MS.La première partie de cette thèse se concentre sur la caractérisation précise du secteur de Higgs. En particulier, le code public Lilith est présenté, il permet de dériver des contraintes sur des scénarios de nouvelle physique à l’aide des mesures des propriétés du boson de Higgs en collisionneurs. Une analyse des couplages du boson de Higgs dans le contexte de plusieurs scénarios est ensuite effectuée. Dans la seconde partie, la phénoménologie des modèles à deux doublets de Higgs est étudiée à la lumière des résultats de la première phase du LHC. La limite d’alignement, ainsi que la possible présence de bosons de Higgs légers, sont étudiées en détail. Finalement, dans la dernière partie de cette thèse, l’hypothèse de Violation Minimale de la Saveur est introduite comme une solution potentielle aux problèmes de la saveur au delà du MS. Appliquée au Modèle Standard Supersymétrique Minimal, l’évolution des couplages baryoniques violant la parité R sous le groupe de renormalisation est analysée en détail. / The Standard Model (SM) of particle physics stands as the most successful description of the fundamental interactions between elementary particles. The discovery of a Higgs boson, at a mass of 125 GeV, in July 2012 at the Large Hadron Collider (LHC), marked its ultimate confirmation. However, various observational and theoretical problems lie in the heart of the SM, with the majority of them linked to the Higgs sector. Being a scalar, the Higgs boson is subject to very large radiative corrections and this ultimately leads to the electroweak hierarchy problem. One of the main goals of the LHC program is to precisely probe the Higgs sector, in order to characterize the mechanism at the origin of the breaking of the electroweak symmetry and test possible solutions to the hierarchy problem. The Higgs sector is also responsible for the generation of the fermion masses, as it induces the Yukawa couplings. The SM flavor sector is highly hierarchical and this leads to flavor puzzles in theories beyond the SM.The first part of this thesis is dedicated to the precise characterization of the Higgs sector. In particular, the public tool Lilith is presented, which allows to derive constraints on new physics models based on the Higgs measurements at colliders. It is then used to perform global fits of the Higgs couplings in the context of various scenarios. In the second part, the phenomenology of two-Higgs-doublet models is studied in the light of the results from the first run of the LHC. The so-called alignment limit is explored in detail, as well as the possible presence of light scalar states. Finally, in the last part of this thesis, the Minimal Flavor Violation hypothesis is introduced as a possible solution to the flavor puzzles beyond the SM. Enforcing it in the Minimal Supersymmetric Standard Model, the renormalisation group evolution of the baryonic R-parity violating couplings is then studied in detail.
45

[en] STABILITY AND PERTURBATIVITY CONSTRAINTS ON HIGGS PORTAL MODELS / [pt] VÍNCULOS DE ESTABILIDADE E PERTURBATIVIDADE EM MODELOS DE PORTAL DE HIGGS

MARCUS VINÍCIUS MARINHO PEREIRA DE MELO 10 January 2019 (has links)
[pt] O Modelo Padrão é uma das teorias mais bem sucedidas da física de partículas. Com a descoberta do bóson de Higgs, além de ter sido uma demonstração robusta do poder preditivo do Modelo Padrão, foi aberto um novo caminho para a investigação de nova física interagindo por meio do portal de Higgs, incluindo cenários motivados por matéria escura e bariogênese. Investigamos a estabilidade do potencial e os pólos de Landau do Modelo Padrão sob efeito da interação entre o bóson de Higgs e uma partícula escalar. Focamos no regime onde os escalares são gerados primariamente via um off-shell Higgs. Prevemos o espaço de parâmetros disponível para acessar a teoria em diferentes valores de massa do campo escalar. / [en] The Standard Model is one of the most successful theories in particle physics. With the discovery of the Higgs boson, a new pathway has been opened to investigate possible new physics interacting through the Higgs portal, including scenarios motivated by dark matter and baryogenesis. Supposing there is a neutral scalar state in the Standard Model coupled to it only through the Higgs portal, we investigate the potential stability and the Landau poles of the extended Standard Model potential. We focus on the regime in which the scalars are primarily generated via an off-shell Higgs. We predict the available parameter space to probe the theory for different mass values.
46

Top-down and bottom-up excursions beyond the standard model : the example of left-right symmetries in supersymmetry / Excursions « top-down » et « bottom-up » au-delà du modèle standard : l'exemple des symétries gauches-droites en supersymétrie

Alloul, Adam 20 September 2013 (has links)
Une très grande effervescence secoue le monde de la physique des particules depuis le lancement du grand collisionneur de hadrons (LHC) au CERN. Cette énorme machine capable de faire se collisionner des protons à des énergies égales à 14 TeV promet de lever le voile sur la physique régissant les interactions à ces échelles d’énergies. Ces résultats sont d’autant plus attendus que l’on a acquis la certitude que le Modèle Standard de la physique des particules est incomplet et devrait, en fait, être interprété comme la théorie effective d’une théorie plus fondamentale. Toutefois, depuis le lancement des expériences au LHC avec des énergies de 7 puis de 8 TeV aucun signe de nouvelle physique n’a été découvert. Par contre, un énorme bond en avant a été franchi avec la découverte d’une particule scalaire de masse égale à 125 GeV et dont les propriétés sont relativement proches de celles du boson de Higgs telles que prédites par le Modèle Standard. C’est dans ce contexte de forte émulation internationale que mon travail de thèse s’est inscrit. Dans un premier temps, nous avons voulu explorer la phénoménologie associée au secteur des neutralinos et charginos du modèle supersymétrique symétrique gauche-droit. Cette étude peut être motivée par plusieurs raisons notamment le fait que leur caractère supersymétrique apporte une solution au problème dit de la hiérarchie mais implique aussi l’unification des constantes de jauge ainsi que l’explication de la matière noire. L’introduction de la symétrie entre les fermions gauchers et les fermions droitiers permet, quant à elle, d’expliquer naturellement, via le mécanisme dit de la balançoire, la petitesse de la masse des neutrinos mais aussi de répondre à plusieurs autres questions non solubles dans le cadre du Modèle Standard. Nous concentrant uniquement sur le secteur des charginos et neutralinos les plus légers, nous avons montré que ces modèles peuvent être facilement mis en évidence dans les évènements multi-leptoniques en ce sens que les signatures qu’ils induisent sont tr`es différentes comparées à celles du Modèle Standard et de sa version supersymétrique.[...] / The field of high-energy physics has been living a very exciting period of its history with the Large Hadron Collider (LHC) at CERN collecting data. Indeed, this enormous machine able to collide protons at a center of mass energy of 14 TeV promises to unveil the mystery around the physics at such energy scales. From the physicists side, the expectations are very strong as it isnowadays a certitude that the Standard Model of particle physics is incomplete and should, in fact, be interpreted as the effective theory of a more fundamental one. Unfortunately, the 7 and 8 TeV runs of the LHC did not provide any sign of new physics yet but there has been at least one major discovery in 2010, namely the discovery of a scalar particle with a mass of 125 GeV and whichproperties are very close to those of the Standard Model Higgs boson. Since then, many questions have come up as we now want to understand if it really is the Standard Model Higgs boson or if it exhibits any deviations. It is in this peculiar context that my research work was carried. In a first project, we, my supervisors, our collaborator and I, have wanted to explore thephenomenology associated with the neutralinos and charginos sector of the left-right symmetric supersymmetric model. Such an analysis can be motivated by several reasons such as the fact that the supersymmetric nature of these models provides a natural explanation for the infamous hierarchy problem, implies the unification of the gauge coupling constants at very high energy and provides a natural candidate for dark matter. In addition to these nice features, the left-right symmetry introduces a natural framework for explaining the smallness of neutrino masses but also helps in addressing several other unresolved issues in the Standard Model framework. Only focusing on the lightest charginos and neutralinos decaying into one or more light leptons, we have shown in our study that these models can be easily discovered in multi-leptonic final states as theylead to signatures very different from those induced by the Standard Model or its supersymmetric version.[...]
47

Search for a vector-like quark T' decaying into top+Higgs in single production mode in full hadronic final state using CMS data collected at 8 TeV / Recherche d'un quark vectoriel T¹ qui se désintègre entop+Higgs dans le mode de production célibataire dans le état final hadronique avec les données recueillies par l'expérience CMS à 8 TeV

Ruiz Alvarez, José David 21 October 2015 (has links)
Le LHC (Large Hadron Collider) a produit en 2012 des collisions proton proton à une énergie de 8 TeV dans le centre de masse pour les expériences ATLAS et CMS. Ces deux expériences ont été conçues pour découvrir le boson de Higgs et pour rechercher de nouvelles particules prédites par des modèles théoriques. Le boson de Higgs a été découvert le 4 juillet 2012 par les expériences ATLAS et CMS. Cette découverte marque le début d'une nouvelle période de recherche dans le domaine. Avec la confirmation de l'existence du boson de Higgs, les recherches de nouvelle physique liées à ce boson sont devenues prioritaires. Par exemple, on peut chercher dans les données une nouvelle particule massive qui peut se désintégrer dans un boson de Higgs associé à d'autres particules du modèle standard. Une signature attendue est un boson de Higgs avec un quark top, les deux particules les plus lourdes du modèle standard. Le modèle standard prédit une section efficace pour la production du Higgs avec un quark top. Ainsi une mesure de cette section efficace montrant une valeur plus importante prouverait l'existence de physique au-delà du modèle standard. En outre, l'existence de physique au-delà le modèle standard pourrait montrer des résonances qui se désintègrent dans un quark top et un boson de Higgs. Dans la première partie de ce manuscrit, je présente les bases théoriques et expérimentales du modèle standard, ainsi que le dispositif expérimental. Dans le même chapitre théorique je discute une extension du modèle standard dans le cadre d'un modèle effectif englobant ce dernier. De plus, je détaille une étude de faisabilité d'une recherche d'une des nouvelles particules prédites par ce modèle, un quark vectoriel. Dans la deuxième partie, la recherche dans CMS de ce quark vectoriel T_, partenaire du quark top, est décrite. Ce partenaire du top est une nouvelle particule très similaire au quark top du modèle standard, mais beaucoup plus lourde. On considère le cas où ce nouveau quark se désintègre préférentiellement dans un quark top et un boson de Higgs. J'ai fait cette recherche dans le canal hadronique ou le Higgs se désintègre en deux quarks b et le quark top se désintègre en trois quarks, un quark b et deux quarks légers. J'ai reconstruit la masse du T_ à partir de l'identification de tous ses produits de désintégration. Le résultat obtenu est décrit sous forme des limites observées sur la section efficace de production du T_ déduites à partir de cette analyse / During 2012, the Large Hadron Collider (LHC) has delivered proton-proton collisions at 8 TeV center of mass energy to the ATLAS and CMS experiments. These two experiments have been designed to discover the Higgs boson and to search for new particles predicted by several theoretical models, as supersymmetry. The Higgs boson has been discovered by ATLAS and CMS experiments on July, 4th of 2012, starting a new era of discoveries in particle physics domain. With the confirmation of the existence of the Higgs boson, searches for new physics involving this boson are of major interest. In particular, data can be used to look for new massive particles that decay into the Higgs boson accompanied with other particles of the standard model. One expected signature is a Higgs boson produced with a top quark, the two heaviest particles in the standard model. The standard model predicts a cross section of top-Higgs production, then any enhancement of their associated production will be a clear signature of physics beyond the standard model. In addition, the existence of physics beyond the standard model can also be reflected by resonances that decay into a top-quark and a Higgs boson. In the first part of my work I describe the theoretical and experimental foundations of the standard model, as well as the experimental device. In the same theoretical chapter, I also discuss the formulation of an extension of the standard model. In addition, I describe a feasibility study of a search of one of the particles predicted by such model. The second part contains the realization of the search for a top partner, T_, within the CMS experiment. This top partner is a new particle very similar to the standard model top quark, but much heavier, that can decay into a top quark and a Higgs boson. The analysis looks for this particle in the full hadronic final state, where the Higgs boson decays into two b-quarks and the top quark decays into three standard model quarks, a b and two light quarks. In this channel, I reconstruct its mass from the identification of all its decay products. As a result of the analysis, I show the limits on the T_ production cross section from the number of observed events in the specific signature
48

Nouvelle Physique, Matière noire et cosmologie à l'aurore du Large Hadron Collider / New physics, Dark matter and cosmology in the light of Large Hadron Collider

Tarhini, Ahmad 05 July 2013 (has links)
Dans la première partie de cette thèse, je présenterai le 5D MSSM qui est un modèle super symétrique avec une dimension supplémentaire. (Five Dimensional Minimal Supersymmetric Standard Model). Apres compactification sur l'orbifold S1/Z2, le calcul des équations du groupe de renormalisation (RGE) à une boucle montre un changement dans l'évolution des paramètres phénoménologiques. Dès que l'énergie E = 1/R est atteinte, les états de Kaluza- Klein interviennent et donnent des contributions importantes. Plusieurs possibilités pour les champs de matière sont discutés : ils peuvent se propager dans le "bulk" ou ils sont localisés sur la "brane". Je présenterai d'une part l'évolution des équations de Yukawa dans le secteur des quarks ainsi que les paramètres de la matrice CKM, d'autre part, les effets de ce modèle sur le secteur des neutrinos notamment les masses, les angles de mélange, les phases de Majorana et de Dirac. Dans la deuxième partie, je parlerai du modèle AMSB et ses extensions (MM-AMSB et HCAMSB). Ces modèles sont des scenarios de brisure assez bien motivés en super symétrie. En calculant des observables issues de la physique des particules puis en imposant des contraintes de cosmologie standard et alternative sur ces scénarios, j'ai déterminé les régions qui respectent les contraintes de la matière noire et les limites de la physique des saveurs. Je reprendrai ensuite l'analyse de ces modèles en utilisant de nouvelles limites pour les observables. La nouvelle analyse est faite en ajoutant les mesures récentes sur la masse du Higgs et les rapports de branchement pour plusieurs canaux de désintégrations / In the first part of this thesis, we review the Universal Extra-Dimensional Model compactified on a S1/Z2 orbifold, and the renormalisation group evolution of quark and lepton masses, mixing angles and phases both in the UED extension of the Standard Model and of the Minimal Supersymmetric Standard Model (the five-dimensional MSSM). We consider two typical scenarios: all matter fields propagating in the bulk, and matter fields constrained on the brane. The two possibilities give rise to quite different behaviours. For the quark sector we study the Yukawa couplings and various flavor observables and for the neutrino sector, we study the evolution of neutrino masses, mixing angles and phases. The analysis is performed in the two cases for different values of tan β and different radii of compactification. The resulting renormalization group evolution equations in these scenarios are compared with the existing results in the literature, together with their implications. In the second part, we present a simulation study about anomaly mediated supersymmetry breaking and its extensions. Anomaly mediation is a popular and well motivated supersymmetry breaking scenario. Different possible detailed realisations of this set-up are studied and actively searched for at colliders. Apart from limits coming from flavour, low energy physics and direct collider searches, these models are usually constrained by the requirement of reproducing the observations on dark matter density in the universe. We reanalyse these bounds and in particular we focus on the dark matter bounds both considering the standard cosmological model and alternative cosmological scenarios. We briefly discuss the implications for phenomenology and in particular at the Large Hadron Collider. After that we update our analysis by using new limits from observables and adding recent Higgs boson measurements for the mass and signal strengths in different decay channels
49

The Higgs Boson as a Probe of Physics Beyond the Standard Model at the Large Hadron Collider

Mohan, Kirtimaan A January 2014 (has links) (PDF)
The nature of interactions of fundamental particles is governed by symmetries. These interactions are well described by an elegant and simple SU(3)c x SU(2)L x U(1)Y symmetric gauge theory that we call the Standard Model (SM) of particle physics. Very recently the CMS and ATLAS experiments at the Large Hadron Collider (LHC) confirmed the discovery of a boson of mass of about 125 GeV. Already, the data collected from these experiments seem to indicate that this particle is in fact the last missing piece and essential ingredient of the Standard Model : the Higgs boson. The Higgs has the very distinct role of providing a mechanism through which masses for other particles can be generated without destroying gauge invariance and hence the renormalizability of the theory. While this discovery completes the picture we have of the SM, the SM itself does not account for several experimentally observed phenomena , notably, dark matter (DM) and the baryon asymmetry in the universe (BAU). From a theoretical perspective a possibility for gauge coupling unification, an explanation for the quark flavour structure and the stability of the Higgs mass to radiative corrections are features that are absent in the framework of SM. This provides a strong basis to the hypothesis that there must be some intermediate scale (between the Planck scale and electroweak scale) of new physics, i.e. physics beyond the SM (BSM). The renormalizability of SM guarantees that various parameters of SM can be determined from the electroweak scale all the way up to the Planck scale. It is interesting to note that the RG evolution of the Higgs quartic coupling is driven to smaller values and can also become negative as the energy scale increases. Naively, a negative quartic coupling indicates destabilization of the EWSB vacuum. The energy scale at which the quartic coupling becomes negative would signify a break down of the theory and would set a scale for new physics. In principle the potential can be made stable through Planck scale dynamics and other vacua (other than the EWSB vacuum) may crop up. In this scenario the EWSB vacuum may decay to the deeper vacua. It is safe to say that, within experimental uncertainties of the Higgs and top quark masses the EWSB vacuum appears to be metastable. We are now left clueless: neither do we have any hints as to the nature of BSM physics nor the scale at which SM breaks down and new physics is assured. One should also note that although the evidence for BSM is compelling, data analysed from 7 and 8 TeV runs of the LHC have not produced any signals of BSM physics so far. Thus any indications of TeV scale BSM physics have been eluding us. In such a scenario the Higgs boson has assumed the role of a portal to study the possibilities of new physics. This is also motivated by the key role that the Higgs plays in generation of mass in a gauge symmetric theory. It is therefore reasonable to assume that the Higgs boson does in fact couple to particles predicted in BSM physics. Such couplings would play a role in modifying the properties of this boson. It is now essential to determine the properties of the Higgs as precisely as possible to search for signs of BSM. This thesis explores the idea of using the Higgs as a portal to study BSM physics. The properties of the Higgs that have already been measured with data from the first two runs of the LHC are its mass, branching ratios, spin and CP. When placed in the framework of a particular new physics model, these properties impose restrictions on the couplings and masses of BSM particles. A strong candidate for a BSM scenario is a Supersymmetric extension of the SM. Supersymmetry is an extension of the Poincar´e group that describes space time symmetries. Fermionic and bosonic degrees of freedom are mixed through the generators of this extended symmetry. In the minimal supersymmetric extension of the SM (MSSM), each particle of SM has a corresponding superpartner with identical quantum numbers modulo its spin. Since we do not see, for example, a bosonic superpartner of the fermionic top quark of the same mass as that of the top quark, this must mean that the supersymmetry, even if it is realized in nature, is not exact and must be broken. Although the symmetry may be broken the MSSM has some very appealing features: stabilization of the Higgs mass to quantum corrections, gauge coupling unification and possible dark matter candidate if the lightest Supersymmetric particle happens to be both stable and neutral. It is interesting to note that in MSSM, the tree level Higgs mass is bounded from above by the Z boson mass ( ~90 GeV ). The measured value of the Higgs mass (~126 GeV ) is still achievable in the MSSM through quantum corrections, the largest contribution coming from the top quarks and stop squarks. One therefore sees that the mass of the Higgs can already provide information about top superpartners. The presence of additional charged and coloured scalars implies the possibility of existence of charge and colour breaking (CCB) minima which would affect the stability of the Electroweak Symmetry breaking (EWSB) minima generated by the Higgs potential. Stability of EWSB is then dependent on parameters in the scalar sector of MSSM. We explore the nexus between the Higgs mass and vacuum stability in this model and find restrictions on the MSSM parameter space. The lighter Higgs of the MSSM couples differently to SM particles than the SM Higgs boson. More specifically one expects the couplings of the MSSM Higgs to gauge bosons to be smaller than in SM and unlike the SM Higgs, up type quarks have couplings strengths that are different from that of down type quarks. In the decoupling regime these differences become negligible and the lighter MSSM Higgs behaves identically to the SM Higgs. The measured Higgs rates do not show any large deviations from the expectations of a SM Higgs. It is therefore reasonable to assume that MSSM, if realized, resides in the decoupling regime. While tree level processes are not altered significantly in this regime, the same cannot be said about loop induced processes such as (h→ γγ) or (gg → h). Such processes may be affected significantly by sparticles running in the loops. Higgs decays to two photons can be strongly affected by the stau sector of MSSM and we study this in connection with EWSB vacuum stability. In several models of dark matter, the dark matter candidate particle couples to the Higgs boson. It may well be that this candidate particle may be light enough so that the decay of the Higgs boson to these particles may be possible. For example, in the framework of the MSSM, the LSP (˜χ01) is the dark matter candidate and a decay of the form hχ˜→01χ˜01is possible depending on the mass and strength of coupling of such a particle. At the LHC this would show up as an branching ratio to particles that are invisible to the detectors. The dominant production mode of the Higgs at LHC proceeds through gluon fusion. In this channel a signal for an “invisibly” decaying Higgs would show up as missing energy plus jets at LHC. This has already been studied in quite some detail. We focus on other production modes, namely Vector Boson Fusion (VBF) and associated production (VH), in determining an invisible branching fraction at LHC. These two production channels are much less sensitive to any other BSM signals that may mimic an invisibly decaying Higgs and thus provide clean signals for the latter. A determination of the nature of interactions between the Higgs and gauge bosons is of paramount importance. An understanding of these interactions is closely tied to an understanding of the nature of EWSB. There are two aspects to probing these interactions. One is a determination of the Lorentz structure of the Higgs and gauge boson vertices and the second is to determine the strength of its couplings. The Higgs coupling to two gauge bosons (the hVV vertex) in SM is of the form ~ agµν . Under the assumption that BSM physics does not alter this Lorentz structure, information about possible new physics can be simply extracted through a determination of the strength of the coupling aV . However, the most general structure of this vertex is of the form (aV gµν + bV pµq ν + cV ɛ µνρσpρqσ) . Here p and q are the sum and difference of the two gauge boson momenta respectively and ɛµνρσ the completely antisymmetric Levi-Civita tensor. The term cV parametrizes CP-odd couplings while the rest are CP-even. The terms proportional to b V and cV may be generated by new physics. But which new physics model do we look at? There are a plethora of such models. Rather than shooting in the dark at random BSM directions one could adopt the following approach. In the absence of BSM signals at the LHC so far, one could assume that the scale of physics is relatively high and BSM particles are more massive than SM particles and can therefore be integrated out of the Lagrangian. It is also prudent to assume that new physics respects the SU(3)c x SU(2)L x U(1)Y gauge symmetry of SM. With these two assumptions in hand, one could supplement the SM Lagrangian with additional operators. These operators which generally have mass dimensions greater than four would destroy the renormalizability of the theory, though an interpretation as an effective theory up to a scale Λ is still valid. The idea is to now study the consequences that this effective theory would have on measurable properties of the Higgs. The effective theory could affect both the Lorentz structure as well as the strength of the couplings of the Higgs to the gauge bosons. This thesis deals with the determination of the Lorentz structure of the Higgs coupling to two gauge bosons , i.e the trilinear vertex. An analysis of this for the hZZ vertex has already been performed by ATLAS and CMS using h → ZZ *decays. A pure pseudoscalar Higgs (cZ ≠0, aZ = bZ = 0) coupling has been ruled out at about 2 ~ 3 σ level. Bounds have also been placed on a mixed scalar-pseudoscalar coupling (a Z =0,cZ =0,bZ = 0). This however, is not the end of the story. There are two important points to note here. Firstly it is important to be able to verify these findings in other production modes. To this end, we investigate the ability of VBF production to probe such anomalous couplings and find strong effects on the pseudo-rapidity distributions of the tagging jets in VBF. Secondly it is important to also look for such anomalous couplings in the hWW vertex. At this point, one might argue that the hZZ vertex and hWW vertex are connected by Custodial symmetry. However this symmetry is violated in SM by gauging of the hypercharge. It follows that violations of this symmetry should arise naturally in BSM physics. A study of the anomalous vertex is not easily achieved in h→ WW ∗ decays due to backgrounds and difficulties in reconstructing momenta. The VBF channel can be quite effective here although there is significant contamination from VBF production through the Z boson. We find that a cleaner production mode to use would be associated production. Until recently the low cross-section of Vh made it difficult to analyse this channel at LHC. An analysis of Vh has been made possible by the use of modern jet substructure techniques using (h→ bb) decays. We use these techniques and study how one can probe anomalous couplings in the Vh production mode at LHC. One of the most important couplings of the Higgs is that to the top, the heaviest SM particle. Not only is this coupling responsible for the main production channel of the SM Higgs at the LHC but the interaction with the top also has important consequences on spontaneous symmetry breaking within the SM – notably, vacuum stability arguments – as well as beyond the SM – supersymmetry, for instance, where the top drives electroweak symmetry breaking in some scenarios. The strength as well as the CP property of the Higgs top coupling is therefore an important aspect of to study. more specifically we investigate terms of the form ψ¯t(at + ibtγ5)ψth. here ψt and h corresponds to the top quark and Higgs fields respectively. at and bt parametrize scalar and pseudoscalar couplings respectively. Since the dominant production mode of the Higgs at the LHC (gluon fusion) proceeds through a top quark loop as do decays of the Higgs to two photons, some information about these couplings may be extracted just by looking at Higgs production and decay rates. However, an unambiguous determination of these couplings is possible only through Higgs production with a top and anti-top pair. Although the production rates are very small at the LHC, such a study is of prime importance. We investigate t¯th production at the LHC and list some useful observable that can probe the couplings described above. The outline of the thesis is as follows. We start with brief introduction to SM and Electroweak Symmetry breaking (EWSB) also briefly reviewing SM Higgs production and decay at the LHC. We then investigate the information that the Higgs mass in conjunction with stability of the EWSB vacuum provides about the stop sector of the MSSM. We further investigate the information that Higgs decay rates in conjunction with the stability of the EWSB vacuum could provide about the stau sector in the MSSM. We move on to examining the extent to which an invisible branching ratio of the Higgs could be measured or excluded directly at the LHC. Coming to the second part of the thesis we examine in a model independent way the nature of the Higgs-gauge boson couplings. We first give a brief description of the Higgs gauge boson vertex and the effective theory approach following it up with a description of how this could be probed using Higgs decays. We then follow it up with a study on how the Lorentz structure could affect Higgs production in Vector Boson fusion and Higgs production in association with W or Z boson. Finally, we show how the CP properties of the Higgs coupling to the top quark can be investigated using tth production along with Higgs rates.
50

Probing the Beyond Standard Model Physics in Top Quark and Dark Matter Sectors

Mendiratta, Gaurav January 2017 (has links) (PDF)
The Standard Model (SM) of particle physics provides the theoretical framework to describe the fundamental interactions among elementary constituents of matter. SM is supported by experiments to a high degree of accuracy, up to parts per-mil for the electroweak (EW) sector and parts-per-trillion for QED alone, but it still remains incomplete. Many observed phenomena lack explanation in the framework of the SM and its particles. They indicate the possibility of existence of particles and interactions beyond the SM (BSM). These phenomena include dark matter (DM), dark energy and baryonic asymmetry of the universe. In addition, a quantum description of gravity is still lacking. The top quark has the largest mass among the SM particles. Due to it’s heavy mass, top quark is the only colored particle which does not hadronize and hence its properties are directly accessible by studying it’s decay particles. The order one Yukawa coupling of the top quark also imbibes it with an important role in the behavior of the SM couplings at higher energy scales where possible BSM physics may contribute. As a result, precision measurements of top quark properties may provide a glimpse into BSM physics and hence making these measurements is one of the core aims of the Large Hadron Collider. In stark contrast with top quark physics is the elusive, dark matter (DM) of the universe. There exists a lot of observational evidence for it but, as of yet, with no clue with regards to its particle properties and interactions. Compelling evidence for the existence of DM comes from measurements based on cosmic microwave background radiation, astrophysical observations of distribution of visible matter in galaxy clusters, galactic cluster collisions (e.g. bullet cluster), gravitational lensing, galactic rotation curves, structure formation simulations, to name a few. It is interesting to investigate the possibility that there may be a connection between top quark and DM. In this thesis, we extend the SM with simplified models to study BSM physics at colliders and also to explain the DM puzzle. Here, we use the Top quark as a laboratory for constructing generic probes of BSM and also of the dark sector physics. In Chapter 1, we introduce some relevant background and salient aspects of the SM framework on which the following BSM theories are built. In Chapter 2 we explore an s channel and a t-channel simplified model in the context of top quark pair production using asymmetries constructed with kinematic variables of the top decay products. In Chapter 3, we then propose a simplified model which includes a colored scalar as the mediator between DM and SM particles, termed gluphillic scalar dark matter (GSDM). Monojet process is one of the primary channels to probe DM at hadron colliders. In Chapter 3, the discussion of monojet process at the Large Hadron Collider (LHC) is limited to the effective field theory (EFT) framework. In Chapter 4 we discuss collider processes in GSDM model with complete loop calculations for the diagrams involving the mediating colored scalar. We also compare the loop calculation with the EFT results to find the range of applicability of the EFT. The top quark study in Chapter 2 was initially inspired from an interesting observation made in 2008 which suggested a deviation from the SM in the forward-backward asymmetry (FBA) of a pair produced top quark. The value of FBA measured at the time was 18% ±12%. This value deviated by more than 1σ with respect to the SM leading order (LO) value of 5%. The deviation was observed by both the detectors at Tevatron, D0 and CDF, and it’s significance increased with additional data in 2012. Recent analyses of the data by D0 is now in better agreement with the latest effective-NNNLO calculations. However, the FBA measurements by CDF are still in tension with those by D0 and the value predicted by theoretical calculations. Inspired by this puzzle, which may be on its way to getting solved, we have been able to construct effective probes of BSM physics for the on-going and future searches of BSM in the top quark sector. In our analyses, we studied correlations among observables which can distinguish between different sources of BSM contributions in the top quark pair production. As a template, we use an s-channel and a t-channel mediator, both of which leave very different signatures in the kinematic asymmetry correlations. The simplified models considered by us also included parity breaking interactions which lead to polarized top quarks, providing another probe into the underlying production process. We find that all the kinematic distributions of the decay lepton get influenced by the polarization of the top quark. We show that these correlations can distinguish well between the template models of axigluon and diquark. In general, all of these observables also provide a probe into the polarization of the top quark and therefore any chiral couplings with the mediator. However, the lepton polar angle asymmetry measured in the lab frame is special in that it can not only probe the longitudinal polarization as other observables but is also sensitive to the transverse polarization of the top quark. We also show the effectiveness of the proposed top quark kinematic observables, to distinguish between s and t-channel BSM physics models, in future searches for BSM particles at the run-II LHC. In a large verity of dark matter (DM) models the simplest candidate is the model of a singlet scalar particle. The scalar may couple to the standard model in a number of ways via any of the SM particles. Such models with BSM Yukawa interactions or gauge sector extensions are strongly constrained from both the direct detection and collider precision measurements. The remaining models either predict a very heavy dark matter, completely out of reach of collider searches or introduce an unnaturally weak coupling with the SM particles giving no justifications for the small numbers. An interesting corner of the space of possible DM models which has been under-explored so far includes interactions of DM particles with gluons. Although DM particles cannot themselves be charged or colored, a colored scalar mediator can allow this interaction. One such model arises when we consider the scalar DM in presence of a colored scalar particle, for example the one from t-channel model above. Such colored scalars are generically present in a number of BSM theories including SUSY and GUT. How-ever, without the need for any additional gauge symmetries, the two scalars would interact with each other via the marginal operators. In Chapter 3 we study a SM singlet scalar DM candidate which couples to SM via a colored scalar particle. In the GSDM model, DM and mediator interact via the quartic, marginal operator. DM annihilation cross-section of the order of weak interactions (∼ 0.1pb) is predicted to explain the observed dark matter relic density if arising from thermal production of a WIMP DM candidate of mass ∼ 100 GeV. On investigating the GSDM model, we find that it allows a large annihilation cross-section and is still compatible with direct detection bounds. This is so because the annihilation cross-section to a pair of colored scalars proceeds via a tree-level interaction, whereas the interaction with SM particles proceeds via loop diagrams involving the colored scalars. Our work shows that this model is compatible with the observed relic density of DM when the mediating particle is lighter than DM for a large range of the couplings. For masses of the DM and the mediator less then ∼ 50 GeV, the DM can also be lighter than the mediator where the annihilation then proceeds via loop interactions. This region of parameter space is strongly constrained from the collider physics bounds on a colored scalar particle. These bounds become much weaker in the case where the colored scalar does not couple to quarks and hence cannot decay. The bounds coming from long-lived colored scalars become relevant in those cases and also constrain the light mass window. A colored scalar interacting with quarks must do so without violating the strong flavor constraints. We consider the scalar in the framework of a class of models termed minimally flavor violating (MFV) and also assume that it couples only to the right handed up-sector quarks. Such a particle would couple to the top quark and would be observable at the LHC pair production of the top quark. We find constraints on a color triplet particle in such a case and show the coupling and mass regions allowed. Constraints from the decays to light quarks are interpreted from dijet process searches and limit the mass of a color-triplet scalar above 350 GeV. The primary process for direct search of stable particles produced at a collider is a single jet in association with missing transverse energy (MET). We find that in an effective field theory (EFT) framework, very weak bounds are obtained on the mediating scale. In Chapter 4, we perform complete loop calculations for processes involving colored scalar particles and DM at LHC in order to explore the GSDM model at LHC and FCC (Future Circular Collider). The EFT is valid only for mediator masses much heavier than the momentum transfer or the MET cuts. We show the region of applicability of the EFT by comparing it with respect to the loop induced calculation. We analyze the monojet + missing transverse energy (MET) process to find the expected bounds from LHC 13 TeV run-II. We calculate the reach of the LHC in the high luminosity run in the future and also the reach of the FCC to explore the GSDM model. We perform all our calculations for a number of representations of the colored mediator from a triplet to dimension 15. As expected, collider constraints are only significant when the dark matter is light enough (mDM ∼ 10 GeV) to be copiously produced at the LHC. We find that in the high luminosity run, LHC can probe the scalar triplet particle up-to 50 GeV mass in the monojet process though a dimension 15 particle can be probed up to 150 GeV. With an order of magnitude higher beam energy, FCC can rule out much larger parameter space or provide observational evidence for TeV scale mediating particles. In conclusion, this thesis adds to the growing body of literature which points towards BSM discoveries around the corner at high luminosity LHC in the top physics and in dark sector physics. We have also proposed avenues for precision BSM studies at the next generation colliders.

Page generated in 0.0931 seconds