• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tensile testing and stabilization/carbonization studies of polyacrylonitrile/carbon nanotube composite fibers

Lyons, Kevin Mark 14 November 2012 (has links)
This study focuses on the processing, structure and properties of polyacrylonitrile (PAN)/ carbon nanotube (CNT) composite carbon fibers. Small diameter PAN/CNT based carbon fibers have been processed using sheath-core and islands-in-a-sea (INS) fiber spinning technology. These methods resulted in carbon fibers with diameters of ~3.5 μm and ~1 μm (for sheath-core and INS respectively). Poly (methyl methacrylate) has been used as the sheath or the sea component, which has been removed prior to carbonization. These fibers have been stabilized and carbonized using a batch process. The effect of stabilization has been characterized by Fourier Transform Infrared Spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). A non-isothermal extent of cyclization (Mcyc) from the DSC kinetics study was developed in order to obtain an unbiased method for determining the optimal stabilization condition. The results of Mcyc were found to be in good agreement with the experimental FTIR and WAXD observations. The carbon fiber fracture surfaces have been examined using SEM. Various test parameters that affect the tensile properties of the precursor fiber (both PAN and PAN/CNT), as well as carbon fiber have been studied. In an attempt to validate single filament tests, fiber tow testing has also been done using standard test methods. Batch processed carbon fibers obtained via sheath-core geometry exhibited tensile strengths as high as 6.5 GPa, while fibers processed by islands-in-a-sea geometry exhibited strength values as high as 7.7 GPa.
2

Polyacrylonitrile/carbon nanotube composite fibers: reinforcement efficiency and carbonization studies

Chae, Han Gi 31 March 2008 (has links)
Polyacrylonitrile (PAN)/carbon nanotube (CNT) composite fibers were made using various processing methods such as conventional solution spinning, gel spinning, and bi-component gel spinning. The detailed characterization exhibited that the smaller and longer CNT will reinforce polymer matrix mostly in tensile strength and modulus, respectively. Gel spinning combined with CNT also showed the promising potential of PAN/CNT composite fiber as precursor fiber of the next generation carbon fiber. High resolution transmission electron microscopy showed the highly ordered PAN crystal layer on the CNT, which attributed to the enhanced physical properties. The subsequent carbonization study revealed that carbonized PAN/CNT fibers have at least 50% higher tensile strength and modulus as compared to those of carbonized PAN fibers. Electrical conductivity of CNT containing carbon fiber was also 50% higher than that of carbonized PAN fiber. In order to have carbon fiber with high tensile strength, the smaller diameter precursor fiber is preferable. Bi-component gel spinning produced 1-2 µm precursor fiber, resulting in ~1 µm carbon fiber. The tensile strength of the carbonized bi-component fiber (islands fibers) is as high as 6 GPa with tensile modulus of ~500 GPa. Further processing optimization may lead to the next generation carbon fiber.

Page generated in 0.1267 seconds