• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polyacrylonitrile / carbon nanotube composite fibers: effect of various processing parameters on fiber structure and properties

Choi, Young Ho 15 November 2010 (has links)
This study elucidates the effect of various processing parameters on polyacrylonitrile (PAN) /carbon nanotube (CNT) composite fiber structure and properties. Interaction between PAN and MWNT enabled the gel-spun PAN/MWNT composite fiber to be drawn to a higher draw ratio, than the control PAN fiber, resulting in the composite fiber tensile strength value as high as 1.3 GPa. PAN/MWNT composite fibers were stabilized and carbonized, and the resulting fibers have been characterized for their structure and properties. The effect of precursor fiber shelf-time on the mechanical properties of the gel-spun PAN/MWNT composite fibers is also reported. A rheological study of PAN-co-MAA/few wall nanotube (FWNT) composite solution has been conducted. At low shear rates, the network of FWNTs contributes to elastic response, resulting in higher viscosity and storage modulus for the composite solution as compared to the control solution. On the other hand, at high shear rates, the network of FWNTs can be broken, resulting in lower viscosity for the composite solution than that for the control solution. Larger PAN crystal size (~16.2 nm) and enhanced mechanical properties are observed when the fiber was drawn at room temperature (cold-drawing) prior to being drawn at elevated temperature (~ 165 °C; hot-drawing). Azimuthal scan of wide angle X-ray diffraction (WAXD) and Raman G-band intensities were used for the evaluation of Herman's orientation factor for PAN crystal (fPAN) and FWNT (fFWNT), respectively. Significantly higher nanotube orientation was observed than PAN orientation at an early stage of fiber processing (i.e during spinning, cold-drawing). Differential scanning calorimetry (DSC) revealed that PAN-co-MAA fiber can be converted into cyclic structure at milder conditions than those for PAN. Continuous in-line stabilization, carbonization, and characterization of the resulting carbon fibers were carried out. Rheological and fiber spinning studies have also been carried out on PAN-co-MAA/VGCNF (vapor grown carbon nano fiber). The diameter of PAN-co-MAA/VGCNF composite fiber is smaller than that of the PAN-co-MAA control fiber with same draw ratio due to the suppressed die-swell in the presence of VGCNF. The mechanical properties of PAN-co-MAA control and PAN-co-MAA/VGCNF composite fibers were characterized. Crystalline structure and morphology of the solution-spun PAN-co-MAA/VGCNF fibers are characterized using WAXD and scanning electron microscopy (SEM), respectively. The volume fraction of PAN-CNT interphase in PAN matrix has been calculated to illustrate the impact of CNTs on structural change in PAN matrix, when ordered PAN molecules are developed in the vicinity of CNTs during fiber processing. The effect of PAN-CNT interphase thickness, CNT diameter, and mass density of CNT on volume fraction of PAN-CNT interphase has been explored.
2

Production of textile fibres from filamentous fungi grown on apple pomace : invertase pre-treatment

Berg, Sofia January 2023 (has links)
In this work Rhizopus Delemar was grown on an apple pomace medium, a waste product from the juice industry. The apple pomace was pre-treated with the enzyme invertase to hydrolyse the sucrose available in the waste to glucose and fructose, which are digestible by the fungus. Combination of invertase pre-treatment and yeast extract supplementation, resulted in highest biomass growth which was 4.3 ± 0.5 g/l biomass. The fungal cell wall was separated from fungal biomass using an alkali treatment. A hydrogel was formed from the cell wall material and used for spinning of filaments using dry gel spinning. The average dry weight percentage of the gel was 11.6 ± 1.3 %. The gel was spun through a needle to a collecting rotating surface to make filaments. The filaments were easy to spin and to collect continuous fibres. The spun filaments had a rubber-like texture. All the tested filaments had an ultimate tensile strength approximately 2-3 MPa and 10 – 12% elongation at break. The conclusion of this work is that it is possible to produce fibers from fungi grown in apple waste and that it is possible to improve fungal growth using invertase and yeast extract. The tensile strength of the filaments needs further improvement to compete with other materials used in woven fabrics.
3

Polyacrylonitrile/carbon nanotube composite fibers: reinforcement efficiency and carbonization studies

Chae, Han Gi 31 March 2008 (has links)
Polyacrylonitrile (PAN)/carbon nanotube (CNT) composite fibers were made using various processing methods such as conventional solution spinning, gel spinning, and bi-component gel spinning. The detailed characterization exhibited that the smaller and longer CNT will reinforce polymer matrix mostly in tensile strength and modulus, respectively. Gel spinning combined with CNT also showed the promising potential of PAN/CNT composite fiber as precursor fiber of the next generation carbon fiber. High resolution transmission electron microscopy showed the highly ordered PAN crystal layer on the CNT, which attributed to the enhanced physical properties. The subsequent carbonization study revealed that carbonized PAN/CNT fibers have at least 50% higher tensile strength and modulus as compared to those of carbonized PAN fibers. Electrical conductivity of CNT containing carbon fiber was also 50% higher than that of carbonized PAN fiber. In order to have carbon fiber with high tensile strength, the smaller diameter precursor fiber is preferable. Bi-component gel spinning produced 1-2 µm precursor fiber, resulting in ~1 µm carbon fiber. The tensile strength of the carbonized bi-component fiber (islands fibers) is as high as 6 GPa with tensile modulus of ~500 GPa. Further processing optimization may lead to the next generation carbon fiber.
4

Multi-functional PAN based composite fibers

Chien, An-Ting 07 January 2016 (has links)
Various nano-fillers can introduce specific functions into polymer and expand their application areas. Myriad properties, such as mechanical, electrical, thermal, or magnetic properties can be combined with original polymer characteristics, including flexible, light weight, and ease of use. These composites can be used to produce multi-functional fibers as the next generation textile or fabrics. In this research, Polyacrylonitrile (PAN) is adopted as the main polymer with different nano-fillers, such as carbon nanotube (CNT), iron oxide nanoparticle, and graphene oxide nanoribbon (GONR). Using gel-spinning technology, PAN-based composite fibers are fabricated in single- or bi-component fibers. Fibers are also characterized for their structure, morphology, mechanical properties, as well as for their electrical, thermal, or magnetic properties. For example, bi-component fibers with polymer sheath and polymer-CNT core as well as polymer-CNT sheath and polymer core are processed. With electrical and thermal conductivity introduced by CNT, such bi-components fibers can be applied for wearable electronics or for thermal management. Joule-heating effect owing to applied electrical current on single component PAN/CNT fibers is also investigated. With controllable electrical conductivity and fiber temperature, this active functional fiber can be applied for temperature regulation fibers or new carbon fiber manufacturing process. Another example is magnetic fiber with superparamagnetic iron oxide nano-particles. These novel magnetic fibers with high strength can be used for actuator, inductors, EMI shielding, or microwave absorption. GONR is also discussed and used to reinforce PAN-based fibers. Several theoretical models are considered to analyze the observed results.

Page generated in 0.081 seconds