Spelling suggestions: "subject:"die.objective"" "subject:"24objective""
1 |
A Model to Optimize Major Trauma Network considering Patient SafetyVaishnav, Monit D. 20 May 2019 (has links)
No description available.
|
2 |
Bi-objective multi-assignment capacitated location-allocation problemMaach, Fouad 01 June 2007 (has links)
Optimization problems of location-assignment correspond to a wide range of real situations, such as factory network design. However most of the previous works seek in most cases at minimizing a cost function. Traffic incidents routinely impact the performance and the safety of the supply. These incidents can not be totally avoided and must be regarded. A way to consider these incidents is to design a network on which multiple assignments are performed.
Precisely, the problem we focus on deals with power supplying that has become a more and more complex and crucial question. Many international companies have customers who are located all around the world; usually one customer per country. At the other side of the scale, power extraction or production is done in several sites that are spread on several continents and seas. A strong willing of becoming less energetically-dependent has lead many governments to increase the diversity of supply locations. For each kind of energy, many countries expect to deal ideally with 2 or 3 location sites. As a decrease in power supply can have serious consequences for the economic performance of a whole country, companies prefer to balance equally the production rate among all sites as the reliability of all the sites is considered to be very similar. Sharing equally the demand between the 2 or 3 sites assigned to a given area is the most common way. Despite the cost of the network has an importance, it is also crucial to balance the loading between the sites to guarantee that no site would take more importance than the others for a given area. In case an accident happens in a site or in case technical problems do not permit to satisfy the demand assigned to the site, the overall power supply of this site is still likely to be ensured by the one or two available remaining site(s). It is common to assign a cost per open power plant and another cost that depends on the distance between the factory or power extraction point and the customer. On the whole, such companies who are concerned in the quality service of power supply have to find a good trade-off between this factor and their overall functioning cost. This situation exists also for companies who supplies power at the national scale. The expected number of areas as well that of potential sites, can reach 100. However the targeted size of problem to be solved is 50.
This thesis focuses on devising an efficient methodology to provide all the solutions of this bi-objective problem. This proposal is an investigation of close problems to delimit the most relevant approaches to this untypical problem. All this work permits us to present one exact method and an evolutionary algorithm that might provide a good answer to this problem. / Master of Science
|
3 |
Stochastic local search algorithms for single and bi-objective quadratic assignment problemsBin Hussin, Mohamed Saifullah 17 December 2015 (has links)
The study of Stochastic Local Search (SLS) algorithms is becoming more pivotal these days, due to their vast number of applications in decision making. Prior to the implementation of algorithmic knowledge for decision making, many decisions were made based on manual calculation, on the fly, or even based on guts feeling. Nowadays, such an approach is more rarely seen, especially when the decisions that need to be made are high-risk, cost intensive, or time-consuming. The increasingly often used SLS algorithms are one of the options available to assist the decision making process these days.The work discussed in this thesis concerns the study of SLS algorithms for solving the Quadratic Assignment Problem (QAP), a prominent combinatorial optimization problem, which until today is very hard to solve. Our interest is to study the behavior and performance of SLS algorithms for solving QAP instances of different characteristics, such as size, sparsity, and structure. In this study, we have also proposed new variants of SLS algorithms, inspired by existing, well-performing SLS algorithms for solving the QAP. The new variants of SLS algorithms are then further extended for solving the bi-objective QAP (bQAP).One main focus in this study is to see how the performance of algorithms scales with instance size. We have considered instances that are much larger than the ones usually used in the studies of algorithms for solving the QAP. By understanding how the algorithms perform when the instance size changes, we might be able to solve other problems effectively by considering the similarity in their characteristics to the ones of the QAP, or by seeing common trends in the relative performance of the various available SLS methods. For single objective QAP instances we found that the structure and size of instances do have a significant impact on the performance of SLS algorithms. For example, comparisons between Tabu Search (TS) and Simulated Annealing (SA) on instances with randomly generated matrices show that the overall performance of TS is better than SA, irrespective the size of instances considered. The results on a class of structured instances however show that TS performs well on small-sized instances, while on the larger ones, SA shows better results. In another experiment, Hierarchical Iterated Local Search (HILS) has shown very good results compared to several Iterated Local Search (ILS) variants. This experiment was done on a class of structured instances of size from 100 to 500. An extensive experiment on a class of structured instances of size 30 to 300 using tuned parameter settings shows that population based algorithms perform very well on most of the instance classes considered. SA however, shows very good performance especially on large-sized instances with low sparsity level. For the bQAP, the correlation between the flow matrices does have a strong effect that determines the performance of algorithms for solving them. Hybrid Simulated Annealing (HSA) clearly outperforms Hybrid Iterative Improvement (HII). When compared to Multi Objective Ant Colony Optimization (MOACO) and Strength Pareto Evolutionary Algorithm 2 (SPEA2), HSA shows very good performance, where HSA outperforms MOACO and SPEA2, especially on instances of large size, thus, offering a better scaling behavior. Based the results obtained in this study, it is possible to come up with a general idea on the suitability of SLS algorithms for solving instances with a certain characteristic. Given an unknown QAP instance, one can guess the most suitable algorithm for solving it depending on the type, size, and sparsity of the instance, while for a bQAP instance the most suitable algorithm can be guessed based on its size and correlation between the flow matrices. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
4 |
Technology and Tactics as Dimensions of Design: Explicit Representation of User Actions in the Product Design SpaceStapleton, Tyler 10 August 2020 (has links)
The initial phases of the design process -- including interactions with stakeholders, ideation of concept candidates, and the selection of the best candidates --- have a large impact on the success of a project as a whole. Much of the value generated during these phases comes from the designers' exploration of the design space as they create concepts for the final solution. Unfortunately, an entire dimension of the design space is often ignored during the initial phases of the design process -- the tactics dimension. Engineers tend to emphasize the design of technology in their work, while paying less attention to how that technology is used. By adding tactics to technology as two dimensions of the design space and creating the Tech/Tac plot as a means for visualizing those dimensions, the designer's ability to visualize, understand, and explore an expanded design space is improved. In this paper, we introduce a deliberate design-space structure that can help teams generate and evaluate integrated Tech/Tac concepts. The structure improves concept exploration during the early phases of the design process by harnessing the information provided by a two-dimensional, structured design space. This design space is represented here as a vector space with a basis of technology and tactics. Also presented are definitions and principles that facilitate the use of the technology-tactics framework to represent the design space in various useful ways. Six tests were carried out during this research to develop and evaluate the structure. The final instantiation of the concepts presented in this paper has been shown to be meaningful to design teams during ideation.
|
5 |
Disruption risk mitigation via optimization and machine learning in rail-truck intermodal transportation of hazardous materialsMoradi Rad, Arash January 2020 (has links)
Random disruptions resulting in loss of functionality in service legs or intermodal terminals of transportation networks are an inevitable part of operations, and considering the crucial role of aforementioned networks, it is prudent to strive towards avoiding high-consequence disruption events. The magnitude of the negative impact of a disruption is dependent on component criticality; therefore, limited resources of disruption mitigation should be assigned to the infrastructure with the highest priority. However, categorizing the service legs and terminals based on their actual post-disruption impact is computationally heavy and inefficient.
We propose a methodology based on the combination of a bi-objective hazmat shipment planning optimization model and machine learning to identify critical infrastructure more efficiently. The proposed methodology is applied to part of CSX Corporation’s intermodal rail-truck network in the United States as a realistic size problem instance, in order to gain managerial insight and to evaluate the performance of the methodology. / Thesis / Master of Science (MSc)
|
6 |
Lagrangian Bounding and Heuristics for Bi-Objective Discrete Optimisation / Lagrange-relaxation och heuristik för diskret tvåmålsoptimeringÅkerholm, Ida January 2022 (has links)
For larger instances of multi-objective optimisation problems, the exact Pareto frontier can be both difficult and time-consuming to calculate. There is a wide range of methods to find feasible solutions to such problems, but techniques for finding good optimistic bounds to compare the feasible solutions with are missing. In this study, we investigate the use of Lagrangian relaxation to create optimistic bounds to bi-objective optimisation problems with complicating side constraints. The aim is to develop an effective method to produce optimistic bounds that are closer to the Pareto frontier than the commonly used linear programming bounds. In order to use Lagrangian relaxation on the bi-objective problem, the objectives are combined using the weighted sum method. A Lagrangian dual function is then constructed by relaxing the complicating constraints and the subgradient method is used to optimise the dual problem in order to find an optimistic solution. By solving the single-objective problem for multiple weights, an optimistic bound to the Pareto frontier can be constructed. The subgradient method also includes a heuristic to find feasible solutions. The feasible solutions found by the heuristic form a pessimistic bound to the frontier. The method has been implemented and tested on several instances of a capacitated facility location problem with cost and CO2 emission as objectives. The results indicate that, by using Lagrangian relaxation, an optimistic bound close to the Pareto frontier can be found in a relatively short time. The heuristic used also manages to produce good pessimistic bounds, and hence the Pareto frontier can be tightly enclosed. The optimistic bounds found by Lagrangian relaxation are better and more consistent along the Pareto frontier than the bounds found by linear programming.
|
7 |
Système de gestion du stationnement dans un environnement dynamique et multi-objectifs / Parking management system in a dynamic and multi-objective environmentRatli, Mustapha 12 December 2014 (has links)
Aujourd'hui, le problème de stationnement devient l'un des enjeux majeurs de la recherche dans la planification des transports urbains et la gestion du trafic. En fait, les conséquences de l'absence de places de stationnement ainsi que la gestion inadéquate de ces installations sont énormes. L'objectif de cette thèse est de fournir des algorithmes efficaces et robustes afin que les conducteurs gagnent du temps et de l'argent et aussi augmenter les revenus des gestionnaires de parking. Le problème est formulé comme un problème d'affectation multi-objectifs dans des environnements statique et dynamique. Tout d'abord, dans l'environnement statique, nous proposons de nouvelles heuristiques en deux phases pour calculer une approximation de l'ensemble des solutions efficaces pour un problème bi-objectif. Dans la première phase, nous générons l'ensemble des solutions supportées par un algorithme dichotomique standard. Dans la deuxième phase, nous proposons quatre métaheuristiques pour générer une approximation des solutions non supportées. Les approches proposées sont testées sur le problème du plus court chemin bi-objectif et le problème d'affectation bi-objectif. Dans le contexte de l'environnement dynamique, nous proposons une formulation du problème sous forme d'un programme linéaire en nombres entiers mixtes qui est résolue à plusieurs reprises sur un horizon de temps donné. Les fonctions objectives considérées, permettent un équilibre entre la satisfaction des conducteurs et l'intérêt du gestionnaire de parking. Deux approches sont proposées pour résoudre ce problème d'affectation dynamique avec ou sans phase d'apprentissage. Pour renforcer la phase d'apprentissage, un algorithme à estimation de distribution est proposé pour prévoir la demande future. Pour évaluer l'efficacité des algorithmes proposés, des essais de simulation ont été effectués. Aussi une mise en œuvre pilote a été menée dans le parking à l'Université de Valenciennes en utilisant une plateforme existante, appelée Context Aware Transportation Services (CATS), qui permet le déploiement dynamique de services. Cette plate-forme peut dynamiquement passer d'une approche à l'autre en fonction du contexte. Enfin cette thèse s'inscrit dans le projet SYstem For Smart Road Applications ( SYFRA). / The parking problem is nowadays one of the major issues in urban transportation planning and traffic management research. In fact, the consequences of the lack of parking slots along with the inadequate management of these facilities are tremendous. The aim of this thesis is to provide efficient and robust algorithms in order to save time and money for drivers and to increase the income of parking managers. The problem is formulated as a multi-objective assignment problem in static and dynamic environments. First, for the static environment, we propose new two-phase heuristics to calculate an approximation of the set of efficient solutions for a bi-objective problem. In the first phase, we generate the supported efficient set with a standard dichotomic algorithm. In the second phase we use four metaheuristics to generate an approximation of the non-supported efficient solutions. The proposed approaches are tested on the bi-objective shortest path problem and the biobjective assignment problem. For the dynamic environment, we propose a mixed integer linear programming formulation that is solved several times over a given horizon. The objective functions consist of a balance between the satisfaction of drivers and the interest of the parking managers. Two approaches are proposed for this dynamic assignment problem with or without learning phase. To reinforce the learning phase, an estimation of distribution algorithm is proposed to predict the future demand. In order to evaluate the effectiveness of the proposed algorithms, simulation tests have been carried out. A pilot implementation has also been conducted in the parking of the University of Valenciennes, using an existing platform called framework for context aware transportation services, which allows dynamic deployment of services. This platform can dynamically switch from one approach to another depending on the context. This thesis is part of the project SYstem For Smart Road Applications (SYFRA).
|
8 |
Bi-Objective Optimization of Kidney ExchangesXu, Siyao 01 January 2018 (has links)
Matching people to their preferences is an algorithmic topic with real world applications. One such application is the kidney exchange. The best "cure" for patients whose kidneys are failing is to replace it with a healthy one. Unfortunately, biological factors (e.g., blood type) constrain the number of possible replacements. Kidney exchanges seek to alleviate some of this pressure by allowing donors to give their kidney to a patient besides the one they most care about and in turn the donor for that patient gives her kidney to the patient that this first donor most cares about. Roth et al.~first discussed the classic kidney exchange problem. Freedman et al.~expanded upon this work by optimizing an additional objective in addition to maximal matching. In this work, I implement the traditional kidney exchange algorithm as well as expand upon more recent work by considering multi-objective optimization of the exchange. In addition I compare the use of 2-cycles to 3-cycles. I offer two hypotheses regarding the results of my implementation. I end with a summary and a discussion about potential future work.
|
9 |
Modélisation et optimisation bi-objectif et multi-période avec anticipation d’une place de marché de prospects Internet : adéquation offre/demande / A bi-objective modeling and optimization of a marketplace of Internet prospects with anticipation aspect : offer/demand adequacyMaamar, Manel 07 December 2015 (has links)
Le travail que nous présentons dans cette thèse porte sur le problème d'affectation dans une place de marché de prospects Internet. Plus précisément, ce travail a pour ambition de répondre à la problématique de l'adéquation de l'offre et de la demande, dans un contexte caractérisé par des flux continus faisant évoluer en temps réel l'ensemble des offres disponibles et les demandes à satisfaire. Pour ce faire, nous proposons dans un premier temps un modèle mono-période qui optimise le problème d'affectation à un instant donné et en considérant une seule période de temps, tout en permettant la prise en compte instantanée des nouvelles offres et demandes et leur adéquation en temps réel. Ce modèle permet d'optimiser deux objectifs à savoir: la maximisation du chiffre d'affaires et la satisfaction des clients.Par la suite nous proposons d'étendre ce modèle sur plusieurs périodes de temps futures afin de prendre en compte l'aspect temps réel de l'activité de la place de marché et donc le fait que des flux continus font évoluer en temps réel l'ensemble des offres et des demandes. L'objectif étant de tirer profit de la connaissance concernant cette évolution, par le biais de l'intégration d'un modèle de prévision dans un modèle d'optimisation multi-période.Ainsi, nous proposons un modèle d'optimisation multi-période permettant d'envisager à un instant donné des affectations sur plusieurs périodes de temps futures afin de réaliser les meilleures affectations possibles. Aussi, nous proposons un modèle de prévision des nouveaux flux tout en considérant les caractéristiques du modèle d'optimisation multi-période.Construire un modèle de prévision nécessite de définir les données à prévoir avant d'envisager toute méthode de prévision. En d'autres termes, nous devons choisir les paramètres du modèle de prévision, à savoir: les données historiques appropriées, le pas de temps de la prévision ainsi que l'horizon de la prévision. Le défi consiste donc à définir les paramètres du modèle de prévision qui conviendront au fonctionnement du modèle de l'optimisation multi-période.Par ailleurs, une des caractéristiques de la place de marché est la temporalité de son système. Ainsi, nous proposons un algorithme assurant l'aspect temps réel et donc le fait que les affectations s'effectuent toutes les minutes. L'algorithme que nous proposons fonctionne de manière continue à longueur de journée en optimisant à chaque instant l'adéquation offre/demande de prospects Internet tout en considérant instantanément les flux continus de prospects Internet ainsi que la mise à jour régulière de la demande Enfin, pour mettre en évidence l'efficacité et les bénéfices que la place de marché peut en tirer par l'utilisation des modèles et de l'algorithme proposés, nous avons mené des tests et différentes expérimentations sur des données réelles. Ces tests nous ont permis de valider nos travaux et d'évaluer la qualité des résultats obtenus.L'objectif de ce travail est double, d'une part, donner un cadre solide et formel pour répondre à la problématique de la place de marché de prospects Internet. D'autre part, le cadre proposé devrait être aussi générique que possible afin de résoudre tout autre problème analogue à celui de la place de marché de prospects Internet. / The work that we present in this thesis focuses on the assignment problem in a marketplace of Internet prospects. More precisely, this work aims to address the problem of matching offers and demands in a context characterized by a continuous flows. These latter evolve inreal time the set of available offers and demands to satisfy. To do this, we propose initially a mono-period model which optimizes the assignment problem at a given instant and taking into account asingle period of time while allowing the instantaneous consideration of new offers and demands and their adequacy in real time. This model considers two objectives to optimize, namely: maximization of turnover as well as clients satisfaction.Thereafter, we propose to extend this model over several future time periods in order to take into account the real time aspect of the marketplace activity and so the fact that a continuous flows evolve in real time the set of offers en demands. The objective is to take advantage of knowledge about this evolution, through the integration of a forecasting model in a multi-period optimization model. Thus,we propose a multi-period optimization model for considering at agiven instant assignments over several future time periods. Also, we propose a forecasting model for new flows while considering the characteristics of the multi-period optimization model.Building a forecasting model requires defining the data before considering any forecasting method. In other words, we have to choose the parameters of the forecasting model, namely the appropriate historical data, the forecasting time step and the forecasting horizon. The challenge is to define the parameters of the forecasting model which agree with the functioning the multi-period optimization model.Furthermore, a feature of the marketplace is the temporality of its system. Thus, we propose an algorithm ensuring real-time aspect and so the fact that assignments are made every minute. The proposed algorithm works continuously all day long while optimizing every instant the offer/demand adequacy of Internet prospects and instantly considering the continuous flux of Internet prospects as well as the regular updating demand. Finally, in order to show the efficiency and the benefits that the marketplace can reap by the use of the proposed models, we conducted tests and various experiments on real data. These tests have allowed us to validate the proposed models and evaluate the quality of the results.The aim is twofold, giving a strong and formal framework to address the issue of the marketplace of Internet prospects but also proposing a generic framework to solve any problem similar to that of the marketplace of Internet prospects.
|
10 |
Algorithmes de recherche d'itinéraires en transport multimodal / Shortest path Algorithms in multimodal transportationGueye, Fallou 14 December 2010 (has links)
Ce travail de thèse s’est intéressé au transport urbain de passagers dans un contexte d’offre de transport multimodale consistant en la coexistence de plusieurs modes de transport. Dans la pratique, un problème de transport multimodal nécessite la prise en compte de plusieurs objectifs et de contraintes spécifiques liées aux modes ou à la séquence de modes utilisés. De telles contraintes sont appelées contraintes de viabilité.Cette thèse CIFRE s’est déroulée en collaboration avec la société MobiGIS, spécialisée dans le conseil et le développement d’applications autour des Systèmes d’Information Géographiques.Le problème étudié dans cette thèse est celui de la recherche d’itinéraires viables multimodaux point à point bi-objectif pour lequel il s’agit à la fois de minimiser le temps de trajet et le nombre de changements de mode. Compte tenu notamment des objectifs considérés, ce problème est de complexité polynomiale.Sur la base d’une modélisation multi-couches des réseaux de transport multimodaux et d’une modélisation par un automate à états finis des contraintes de viabilité nous avons proposé différents algorithmes de résolution de ce problème basés sur le principe de fixation et extension de labels. Nous avons également proposé une règle de dominance basée sur les états de l’automate de viabilité et permettant d’élaguer le nombre de labels explorés par nos algorithmes. Des adaptations en bidirectionnel ou en utilisant le principe de la recherche A_ ont également été proposées.Les algorithmes proposés ont été évalués sur une partie du réseau de transport de la ville de Toulouse et les expérimentations ont mis en évidence l’intérêt de la règle de dominance basée sur les états ainsi que de l’approche bidirectionnelle développée.Un prototype logiciel implémentant différentes fonctionnalités des algorithmes de plus courts chemins a été développé. Il permet notamment de réaliser des calculs d’itinéraires point à point, des calculs d’accessibilité ou des calculs de distancier / This thesis focuses on urban passenger multimodal transportation. In practice, a multimodal transportation problem requires taking into account several objectives and specific constraints related to modes or sequence of used modes. Such constraints are called viability constraints. This work has been carried out in collaboration with MobiGIS, a company specialized in consulting and development of applications around Geographical Information Systems.The problem studied in this thesis is the bi-objective multimodal viable point-to-point shortest path, aiming at minimizing the total travel time and the total number of mode changes. Given the considered objectives, this problem is polynomial.On the basis of a multi-layered graph model of the multimodal transportation networks, and of a finite state automaton model of the viability constraints, we propose various algorithms for solving this problem, based on the principle of label setting and extension.We also proposed a new dominance rule based on the states of the automaton to reduce the number of labels explored by our algorithms. Bidirectional and A* variants are also proposed.The algorithms are evaluated the transportation network of the city of Toulouse and experiments demonstrate the interest of the proposed dominance rules and bidirectional approach. A prototype software implementing different features of the shortest path algorithms has been developed. It notably enables calculations of point-to-point routes, accessibility and origin-destination matrices
|
Page generated in 0.0357 seconds