• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical characterisation and structural analysis of normal and remodeled cardiovascular soft tissue

Kotiya, Akhilesh A. 10 October 2008 (has links)
Characterization of multiaxial mechanical properties of cardiovascular soft tissue is essential in order to better understand their growth and remodeling in homeostatic conditions and in response to injury or pathological conditions. Though numerous phenomenological models have been proposed to characterize such multiaxial mechanical behavior, the approach has certain drawbacks regarding experimental determination of the model coefficients. We propose a method that aims to overcome these drawbacks. The approach makes use of orthogonal polynomials to fit the biaxial test data and suggests a way to derive the strain energy function from these analytical fits by way of minimizing the deviation of the behavior from hyperelastic ideal. Using the proposed method, a strain energy function for a lymphatic vessel is derived and the method is compared with traditional ones that used non-orthogonal polynomials as independent variables in the functional form for strain energy. The unique coefficient values obtained using the proposed method, for the first time gives us an opportunity to attribute a physical characteristic of the material to the coefficient values. The method also provides a way to assess two different material behaviors by way of comparing their deviation from the hyperelastic behavior when a similar test protocol is used to collect the data, over a similar deformation range and the order of polynomial function is chosen so as to give a similar error of fit. The behavior of mesenteric lymph vessels from normal cows, cows subjected to sham surgery and those subjected to 3 days of edematous conditions by venous occlusion are compared using this method. To be able to better understand the changes in mechanical behavior, morphological analysis of the vessels was carried out and the geometric and structural changes in these vessels were studied. We found that the behavior of bovine mesenteric lymph vessels subjected to a high flow condition shows a small difference in their mechanical behavior as compared to the vessels from normal a cow and a cow subjected to sham surgery. The geometry and structure of these vessels also showed marked differences from the other two. The thickness to radius ratio increased and a rise in percentage of area occupied by smooth muscle cells and medial collagen was observed. Though not all the differences were statistically significant, we conclude that the behavior and the morphology are suggestive of the remodeling of the vessel in response to altered hemodynamic conditions and require further investigation.
2

Tearing of Vaginal Tissue under Biaxial Loading: Implications for Women's Health

McGuire, Jeffrey Allen 22 June 2020 (has links)
Around 80% of women experience vaginal tears during labor when the diameter of the vagina must increase from ~2.5 cm to ~9.5 cm to allow the passage of a full-term baby. Vaginal tears vary from superficial cuts of the mucosal lining to tears propagating through the entire vaginal wall and into the surrounding tissues and organs. Complications associated with vaginal tears include postpartum hemorrhaging, fecal incontinence, urinary incontinence, and dyspareunia. Beyond the agonizing pain, these complications are emotionally and psychologically traumatic for women. Prevention, evaluation, and treatment of vaginal tears and subsequent conditions are limited due to the lack of studies examining the mechanical behavior of the pelvic floor tissues. Therefore, the mechanical response of healthy and torn vaginal tissue is investigated here to establish quantitative metrics for maternal healthcare. Toward this end, swine and rat vaginal tissue is subjected to biaxial loads until tearing to reveal its mechanical properties. The resulting large inhomogeneous deformations are measured by the digital image correlation optical method to calculate material strain. The influence of these strains near to and far from the immediate vicinity of the tears on the tearing behavior is studied. Coupling mechanisms of the mechanical properties in the circumferential and axial directions as well as their effect on the nature of tear resistance is studied. Collagen fibers, the component within tissue responsible for its strength under tension, are imaged using a multiphoton microscopy technique known as second-harmonic generation imaging to investigate the change in organization with mechanical loading. Furthermore, imaging is performed in the near-regions of tears to reveal the relationship between collagen fibers and tearing resistance. The data collected through these studies provide new knowledge on the nonlinear elastic behavior of vaginal tissue, the geometrical and micro-structural characteristics of tears, and the mechanisms that contribute to the formation and propagation of tears. The mechanical properties and tearing mechanisms of vaginal tissue will be crucial in developing new prevention and treatment methods for maternal trauma following childbirth. Episiotomy, late-term stretching, surgical treatment with graft materials and other protocols will all benefit from a mechanically-informed perspective. It is our hope that this work will raise awareness to the serious complexities of pelvic floor trauma and encourage a more refined and systematic approach to the inspection, imaging, and treatment of all vaginal tears following delivery. This work was supported in part by the National Science Foundation fund #1511603 and the Institute for Critical Technology and Sciences at Virginia Tech. / Doctor of Philosophy / Every year nearly three million women give birth vaginally with 80% experiencing vaginal tears. These injuries sustained during delivery vary with severity and are associated with several conditions, including pelvic floor disorders. These disorders are a set of long-term conditions of the pelvic region presently affecting one-fourth of adult women in the United States. Pelvic floor disorders are: pelvic organ prolapse - a pelvic organ such as the uterus "falls" from its natural position, urinary incontinence - difficulty controlling urination, and fecal incontinence - difficulty controlling bowel movements. Pelvic floor disorders lower the quality of life for women not only physically due to pain and daily discomfort, but also mentally as the disorders are generally perceived as an embarassing and private matter. The pelvic floor represents a complex system of muscles, organs, and support structures that work together to ensure everything stays in place and is functioning properly. Injury to any of these structures poses the risk of developing a disorder. As a central supporting organ, injuries to the vagina may be particularly worrisome. Surprisingly, little is known about the magnitude of forces and/or stretching that is placed on the pelvic floor during delivery, how much force and/or stretching is required for an injury, or how various injuries relate to future complications. The goal of this research is to describe how much the normal, healthy vagina stretches to various forces including forces that will result in injuries. The research further examines the stretching of injured vaginas to quantify any observable differences due to this injury. Finally, the relationships between the biological components of the vagina, such as collagen, and the forces placed on the vagina are examined. The result of this work will provide doctors and engineers with guidelines for understanding the conditions that produce vaginal injuries. The relationships examined between the tissue makeup and forces exerted onto the tissue may also aid in identifying any irregularities that would place a woman at risk for injury. Many of the medical procedures surrounding childbirth as well as surgical treatment for pelvic floor disorders will benefit from knowing how far the vagina can stretch before being injured. It is our hope that this work will raise awareness to the serious complexities of pelvic floor injuries and encourage a more refined and systematic approach to the inspection, imaging, and treatment of all vaginal tears following delivery. This work was supported in part by the National Science Foundation fund #1511603 and the Institute for Critical Technology and Sciences at Virginia Tech.
3

Avaliação do processamento por atrito linear em chapas da liga de titânio Ti-6Al-4V. / Evaluation of friction stir processed titatnium Ti-6AI-4V sheets.

Farias, Adalto de 12 May 2015 (has links)
Esta tese tem por objetivo a aplicação do processamento por atrito linear na liga de titânio Ti-6Al-4V. Derivado da solda por atrito linear, é um processo recente desenvolvido na década de 90 para união de alumínio. Sua aplicação em outros tipos de materiais como aços e ligas de alto desempenho, em especial o titânio, tem interessado a industria. A metodologia utilizada nesta tese para avaliar o processamento por atrito linear, consistiu na execução de ensaios mecânicos de tração em condições mistas em chapas da liga de titânio Ti-6Al-4V. A máquina utilizada para o processamento das chapas foi um centro de usinagem CNC convencional, adaptado com dispositivos especiais. Além dos ensaios de tração em condições mistas, foram executadas medições de microdurezas nas regiões atingidas pelo processo, avaliação das microestruturas resultantes e medições de tensão residual para uma caracterização mais ampla do processo. As microestruturas na região processada são caracterizadas por uma estrutura totalmente transformada. As temperaturas de pico na região processada excederam a temperatura -transus durante o processamento e a transformação da fase + ocorreu durante a fase de resfriamento. A transformação da fase para resultou na formação de agulhas de fase nos contornos e pelo interior dos grãos da fase . Pequenas regiões com estrutura equiaxial de grãos ( globular) foram observados na zona de processamento. A abordagem dos resultados quantitativos foi feita de forma estatística, visando identificar os parâmetros de maior interação com os resultados observados. Foi identificado nesta tese que a rotação da ferramenta apresentou a maior influência nos resultados de tensão residual, microdureza e tensão de escoamento. Uma importante contribuição à modelagem da tensão de escoamento para materiais anisotrópicos é proposta, baseado em um critério de escoamento ortotrópico. Equações complementares baseadas nos testes mistos de tração e cisalhamento são propostas para modificar o modelo ortotrópico. O intuito deste modelo é indicar em que condições o material tem seu regime de escoamento atingido, podendo servir de base para simulações práticas de peças em condições similares. / This thesis aims at the application of friction stir processing (FSP) in Ti-6Al-4V titanium alloy. Derived from friction stir welding (FSW), it is a recent process developed in the 90s for aluminum joining. Its application to other types of materials such as steel and high performance alloys, in particular titanium, has interested industry. The methodology applied in this thesis to evaluate FSP, consisted in the execution of tensile test at mixed conditions to Ti-6Al-4V sheets 4. The machine used for processing the sheet was a conventional CNC milling machine, assembled with special fixture devices. In addition to tensile tests, measurements have been performed to the regions affected by the process such as evaluation of microhardness, microstructure and residual stress condition. The microstructures at the processed region are characterized by a transformed structure. The peak temperatures, in the processed region, exceeded the -transus temperature during the processing and transformation of the phase + occurred during the cooling phase. This transformation resulted in the formation of boundary and intergranular phase (Widmanstätten) at the grains. Small regions of equiaxed grain structure (globular ) were observed in the processed zone. The approach to the quantitative results was made in statistical form aiming to identify the parameters interaction with the observed results. It was identified in this thesis that the tool spinning rotation showed the highest influence on the results of residual stress, hardness and yield strength. An important contribution to the modeling of anisotropic materials yield stress is proposed based on an orthotropic yield criterion. Additional equations based on the mixed tests for tensile and shear are proposed to modify the orthotropic model. The purpose of this model is to indicate the conditions under which the material has reached its yield regime, and may be a basis for practical simulations in similar conditions.
4

Avaliação do processamento por atrito linear em chapas da liga de titânio Ti-6Al-4V. / Evaluation of friction stir processed titatnium Ti-6AI-4V sheets.

Adalto de Farias 12 May 2015 (has links)
Esta tese tem por objetivo a aplicação do processamento por atrito linear na liga de titânio Ti-6Al-4V. Derivado da solda por atrito linear, é um processo recente desenvolvido na década de 90 para união de alumínio. Sua aplicação em outros tipos de materiais como aços e ligas de alto desempenho, em especial o titânio, tem interessado a industria. A metodologia utilizada nesta tese para avaliar o processamento por atrito linear, consistiu na execução de ensaios mecânicos de tração em condições mistas em chapas da liga de titânio Ti-6Al-4V. A máquina utilizada para o processamento das chapas foi um centro de usinagem CNC convencional, adaptado com dispositivos especiais. Além dos ensaios de tração em condições mistas, foram executadas medições de microdurezas nas regiões atingidas pelo processo, avaliação das microestruturas resultantes e medições de tensão residual para uma caracterização mais ampla do processo. As microestruturas na região processada são caracterizadas por uma estrutura totalmente transformada. As temperaturas de pico na região processada excederam a temperatura -transus durante o processamento e a transformação da fase + ocorreu durante a fase de resfriamento. A transformação da fase para resultou na formação de agulhas de fase nos contornos e pelo interior dos grãos da fase . Pequenas regiões com estrutura equiaxial de grãos ( globular) foram observados na zona de processamento. A abordagem dos resultados quantitativos foi feita de forma estatística, visando identificar os parâmetros de maior interação com os resultados observados. Foi identificado nesta tese que a rotação da ferramenta apresentou a maior influência nos resultados de tensão residual, microdureza e tensão de escoamento. Uma importante contribuição à modelagem da tensão de escoamento para materiais anisotrópicos é proposta, baseado em um critério de escoamento ortotrópico. Equações complementares baseadas nos testes mistos de tração e cisalhamento são propostas para modificar o modelo ortotrópico. O intuito deste modelo é indicar em que condições o material tem seu regime de escoamento atingido, podendo servir de base para simulações práticas de peças em condições similares. / This thesis aims at the application of friction stir processing (FSP) in Ti-6Al-4V titanium alloy. Derived from friction stir welding (FSW), it is a recent process developed in the 90s for aluminum joining. Its application to other types of materials such as steel and high performance alloys, in particular titanium, has interested industry. The methodology applied in this thesis to evaluate FSP, consisted in the execution of tensile test at mixed conditions to Ti-6Al-4V sheets 4. The machine used for processing the sheet was a conventional CNC milling machine, assembled with special fixture devices. In addition to tensile tests, measurements have been performed to the regions affected by the process such as evaluation of microhardness, microstructure and residual stress condition. The microstructures at the processed region are characterized by a transformed structure. The peak temperatures, in the processed region, exceeded the -transus temperature during the processing and transformation of the phase + occurred during the cooling phase. This transformation resulted in the formation of boundary and intergranular phase (Widmanstätten) at the grains. Small regions of equiaxed grain structure (globular ) were observed in the processed zone. The approach to the quantitative results was made in statistical form aiming to identify the parameters interaction with the observed results. It was identified in this thesis that the tool spinning rotation showed the highest influence on the results of residual stress, hardness and yield strength. An important contribution to the modeling of anisotropic materials yield stress is proposed based on an orthotropic yield criterion. Additional equations based on the mixed tests for tensile and shear are proposed to modify the orthotropic model. The purpose of this model is to indicate the conditions under which the material has reached its yield regime, and may be a basis for practical simulations in similar conditions.
5

The Role of Tissue Modulus and Cardiac Fibroblast Phenotype in Volume Overload Induced Heart Failure

Childers, Rachel Caitlin January 2016 (has links)
No description available.
6

Design of sandwich structures

Petras, Achilles January 1999 (has links)
Failure modes for sandwich beams of GFRP laminate skins and Nomex honeycomb core are investigated. Theoretical models using honeycomb mechanics and classical beam theory are described. A failure mode map for loading under 3-point bending, is constructed, showing the dependence of failure mode and load on the ratio of skin thickness to span length and honeycomb relative density. Beam specimens are tested in 3-point bending. The effect of honeycomb direction is also examined. The experimental data agree satisfactorily with the theoretical predictions. The results reveal the important role of core shear in a sandwich beam's bending behaviour and the need for a better understanding of indentation failure mechanism. High order sandwich beam theory (HOSBT) is implemented to extract useful information about the way that sandwich beams respond to localised loads under 3-point bending. 'High-order' or localised effects relate to the non-linear patterns of the in-plane and vertical displacements fields of the core through its height resulting from the unequal deformations in the loaded and unloaded skins. The localised effects are examined experimentally by Surface Displacement Analysis of video images recorded during 3-point bending tests. A new parameter based on the intrinsic material and geometric properties of a sandwich beam is introduced to characterise its susceptibility to localised effects. Skin flexural rigidity is shown to play a key role in determining the way that the top skin allows the external load to pass over the core. Furthermore, the contact stress distribution in the interface between the central roller and the top skin, and its importance to an indentation stress analysis, are investigated. To better model the failure in the core under the vicinity of localised loads, an Arcan- type test rig is used to test honeycomb cores under simultaneous compression and shear loading. The experimental measurements show a linear relationship between the out-of-plane compression and shear in honeycomb cores. This is used to derive a failure criterion for applied shear and compression, which is combined with the high order sandwich beam theory to predict failure caused by localised loads in sandwich beams made of GFRP laminate skins and Nomex honeycomb under 3-point bending loading. Short beam tests with three different indenter's size are performed on appropriately prepared specimens. Experiments validate the theoretical approach and reveal the nature of pre- and post-failure behaviour of these sandwich beams. HOSBT is used as a compact computational tool to reconstruct failure mode maps for sandwich panels. Superposition of weight and stiffness contours on these failure maps provide carpet plots for design optimisation procedures.

Page generated in 0.0834 seconds