• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 51
  • 43
  • 22
  • 14
  • 12
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 387
  • 143
  • 67
  • 54
  • 47
  • 45
  • 39
  • 34
  • 33
  • 32
  • 29
  • 27
  • 24
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Functional Dendritic Structures From Bile Acids : Supramolecular Hosts, Light Harvesters And Drug Carriers

Vijayalakshmi, N 09 1900 (has links)
Functional Dendritic Structures from Bile Acids: Supramolelcular Hosts, Light Harvesters and Drug Carriers Chapter 1. An Overview of Functional Dendrimers. Dendrimers are welldefined, hyperbranched macromolecules that are prepared by highly controlled iterative methodologies. The ability to modulate the size, molecular weight, chemical functionalities and the position and number of functional groups in dendrimers make them promising candidates for a wide variety of applications. In this chapter, three areas 1) hostguest chemistry 2) light harvesting and 3) drug delivery, where dendrimers are increasingly finding applications, are discussed with selected examples. Chapter 2. Hydroxyl Terminated Dendritic Oligomers from Bile Acids: Synthesis and Properties. Bile acids are excellent building blocks for dendritic construction because of their many interesting features. They are readily available, chiral, facial amphiphiles with complementary functionalities. Moreover, due to the large size of the bile acid units, a dendritic structure consisting of only a few such repeat units can have an extended structure with multiple functionalizable groups. (figure 1) The high reactivity of the chloroacetyl group has been exploited for the synthesis of bile acid based first and second-generation dendrons with glycolate linkers and multiple hydroxyl groups. The synthesis involves only a few steps and avoids the use of protecting groups for the terminal hydroxyl groups. The synthesis of a bile acid tetramer is shown here as an example (Figure 1). Carboxyl protected cholic acid was reacted with chloroacetylchloride to generate the trischloroacetylated derivative. This compound on reaction with excess of sodium cholate generated the tetramer with nine hydroxyl groups via displacement of the chlorides. In order to synthesize higher generation dendritic structures, perchloroacetylated firstgeneration dendrons were first synthesized. These were subsequently reacted with excess of sodium deoxcholate to generated secondgeneration dendrons with multiple hydroxyl groups (Figure 2). All the compounds were characterized by H NMR, C NMR, IR, ESIMS/MALDI-TOF, HPLC and elemental analysis(wherever possible) Figure 2. Structure of tridecamer. These dendritic structures with facially amphiphilic bile acid backbones on the periphery were able to solubilize cresol red, a hydrophilic dye, in a nonpolar solvent, thus exhibiting reverse micellar characteristics. Chapter 3. Multiple Naproxen Appended Bile Acid Dendrimers as Light Harvesters and Drug Carriers. Part I. Synthesis and Characterization. Using the same synthetic strategy as in Chapter 2, bile acid based dendritic structures appended with multiple bioactive (S)naproxens were generated as potential drug carriers. The construction of these dendrimers was accomplished using per(chloroacetylated) bile acid dendrons and conveniently displacing all the chlorides with naproxen units. Since naproxen is photoactive with a high fluorescence quantum Figure 3. Structures of secondgeneration dendrimers and a monomer with multiple naproxens. yield, the photophysical properties of these multichromophoric dendrimers could be further explored (Figure 3). By functionalizing the carboxyl group on the side chain with an anthracenyl moiety the energy transfer properties of these dendrimers could be studied. In this section the synthesis of first and secondgeneration dendritic structures with multiple naproxen units at the periphery and benzyl/anthracenyl moiety on the side chain are described (Figure 3). Model compounds using monomeric bile acid units were synthesized for comparison with the dendritic structures. All the compounds were characterized by H NMR, C NMR, IR, ESIMS/MALDITOF, HPLC and elemental analysis (wherever possible). Part II: Absorption, Fluorescence and Intramolelcular Energy Tranfer Studies. Absorption studies showed that the molar extinction coefficients increase linearly with increasing number of naproxen units and the absorption spectra of anthracenyl moiety remain unchanged in all the dendritic systems. These indicated the absence of ground state interaction between the chromophores. In the 275-290 nm absorption region, the molar extinction coefficient of naproxen is much greater than that of the 9-anthracenylmethyl chromophore. Hence excitation in this region would mainly excite the naphthalene chromophore. Upon excitation at 275 nm, there was predominant emission from the anthracenyl moiety in the dendritic structures (containing both chromophores) and the fluorescence intensity increased with increasing number of naproxens(Figure4). This indicated that the dendrimers act as efficient light harvesters with energy transfer from naproxen to anthracene (intramolecular nature of the energy transfer was confirmed through control experiments). (Figure 4: Refer PDF File) The fluorescence and energy-transfer properties were further investigated by time-resolved fluorescence spectroscopy. The presence of fast decay component(s) in the naproxen decay in dendritic structures (containing both chromophores) indicates that its fluorescence is quenched in the presence of anthracene due to energy transfer ((λex 275 nm, λem 350 nm (Figure 5). This was further confirmed by monitoring the fluorescence of the sensitized anthracenyl chromophore (λex 275 nm, λem 436 nm) which exhibited a fast rise comparable to he quenched naproxen lifetime(s). The efficiency of energy transfer was estimated by donor quenching by both steadystate and timeresolved techniques. The dendritic structures exhibited high energy transfer efficiencies (~ 70 – 90 %) with the net efficiency decreasing from the first to second-generation. Part III. In vitro Study of Hydrolysis of Naproxen Appended Bile Acid Prodrugs by Chemical and Enzymatic Methods. The naproxen appended bile acid dendrimers consist of hydrolyzable ester and glycolate linkers. Hence the chemical stability and enzymatic degradation with possible release of naproxen was studied. Two compounds, monomer appended with two naproxens and trimer with four naproxens have been used for the initial investigations (Figure 6). The compounds were found to be highly stable towards chemical hydrolysis and did not show any hydrolysis in phosphate buffer, pH = 7.4 even after 7 days. Since the compounds were not soluble in water, Arabic gum and TritonX were used for emulsification. Figure 6. Structures of monomer and trimer. (Refer PDF File) The enzymatic hydrolysis of the compounds was then studied using Candida Rugosa Lipase. In both cases, there was slow hydrolysis of the substrate and intermediates were formed (with release of free naproxen) which were detected by HPLC (reverse phase column with a UV detector). The trimer underwent much slower hydrolysis compared to the monomer. The intermediates were characterized by absorption and mass (ESIMSQTOF) spectrometry.
122

Bile acid-induced DNA damage and repair in bacterial and mammalian cells.

Kandell, Risa Lynne. January 1990 (has links)
Colon cancer is the second most common type of cancer in the United States. Its incidence is linked epidemiologically to high levels of bile acids in the feces. Bile acids have been implicated as promoters and cocarcinogens in the etiology of colon cancer and as comutagens and mutagens in bacteria. These observations suggest the hypothesis that bile acids may damage DNA. By using the DNA-damage inducible SOS system in Escherichia coli, this study shows that when bacteria are exposed to bile acids there is induction of the SOS repair system and preferential survival of cells undergoing repair. Additionally, differential killing assays using repair defective bacteria show strains defective in recombinational repair or excision repair have lower survival when treated with bile acids than their parental wild-type counterparts. Human fibroblasts were treated with bile acids and unscheduled DNA synthesis (UDS) was measured. UDS is considered to represent the DNA synthesis step in excision repair. UDS, measured by autoradiography, was found to significantly increase in human fibroblasts upon treatment with bile acids. In addition, differential cytotoxicity assays with Chinese Hamster Ovary cells showed that different DNA-repair pathway defective cells were sensitive to different bile acids. Introduction of DNA damage and induction of DNA-repair by bile acids implicates them as possible direct carcinogens in the etiology of colon cancer.
123

Cholecalciferol Protects Against Deoxycholic Acid-Induced Loss of EphB2 in Human Colorectal Cancer Cells

Comer, Shawna Beth January 2007 (has links)
Research has identified a linear relationship between saturated fat intake and colon cancer, and has demonstrated that high fat diets enhance tumorigenesis through elevation of secondary bile acids such as deoxycholic acid (DCA). We and others have shown that DCA can manipulate cell adhesion by decreasing expression of E-cadherin and increasing expression of beta-catenin. We have also shown that DCA significantly reduces EphB2 expression, which regulates cell positioning and segregation. Importantly, vitamin D can reinstate membranous E-cadherin/beta-catenin interactions and increase E-cadherin expression. In the present study, we sought to analyze the effects of DCA and vitamin D (cholecalciferol) treatment on EphB2 in colorectal cancer cells. Pre-treatment with cholecalciferol restored EphB2 expression in a dose-dependent manner, even with combined DCA treatment. This observation may be EGFR-dependent, suggesting that cholecalciferol may antagonize the effects of DCA. Taken together, these results suggest that cholecalciferol may represent an adjuvant therapy for colorectal cancer patients.
124

Membrane Perturbation By Bile Acids and Their Potential Role in Signaling

Jean-Louis, Samira January 2005 (has links)
Secondary bile acids have long been postulated to be tumor promoters in the colon but their mechanism of action are yet to be delineated. Though most bile acids are chemically similar, they have been found to exert contrasting signaling effects in the colonic epithelium. Particularly, hydrophobic bile acids such as deoxycholic acid (DCA) are found to be tumor promoters while their hydrophilic counterparts such as ursodeoxycholic acid (UDCA) are chemopreventive. Given the fact that colon cells do not possess bile acid transporters, the question that arises is how do bile acids activate intracellular signaling? In our studies, we examined the actions of bile acids at the cell membrane and found that hydrophobic bile acids can perturb membrane structure. This membrane perturbation was found to be characterized by a change in membrane fluidity and by cholesterol aggregation. Additionally, several membrane associated proteins were found to be deregulated in response to DCA further supporting the above conclusion regarding membrane perturbation. Moreover, caveolin, a negative regulator of membrane microdomains was seen to be dephosphorylated and disassociated from the membrane microdomains, implicating membrane microdomains as a possible target of the effects of DCA on the membrane. Consistent with this, we found that DCA was able to cause rapid and sustained activation of the receptor tyrosine kinase, EGFR and that this activation was ligand-independent. Using fluorescent-tagged bile acids we showed increased aggregation and clustering in the membranes treated with FITC-DCA in a manner that was reminiscent of receptor activation in immune cells. Collectively, these data suggest that bile-acid induced signaling is likely to be initiated through alterations of the plasma membrane structure in colon cancer cells.
125

Mechanisms of Hepatoprotection in a Murine Model of Bile Acid-Induced Intrahepatic Cholestasis

Beilke, Lisa D January 2008 (has links)
There are many causes of cholestasis, which results when the flow of bile acids is slowed or stopped. Bile acids are hydrophobic molecules synthesized from cholesterol in the liver, and when present in excess, are cytotoxic to cell membranes. Treatment options for cholestasis are limited, and if left untreated or inadequately treated, many patients will require a liver transplant; thus, underscoring the importance of successfully managing this disease. Activation of nuclear receptors in animal models has been shown to be hepatoprotective during bile acid-induced cholestasis; however, the mechanisms underlying the hepatoprotective effects are poorly understood. Therefore, the over-arching goal of this project is to glean an improved comprehension of the mechanisms of hepatoprotection during bile acid-induced cholestasis. All of the studies involve administration of CAR activators phenobarbital (PB), oltipraz (OPZ), 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene [TCPOBOP (TC)] or corn oil (CO) to C57BL/6 wild type (WT), or WT and CAR knockout (CAR-/-) mice prior to induction of intrahepatic cholestasis using the secondary bile acid lithocholic acid (LCA). Efflux transport proteins such as Mrps 3 and 4 are known to be up-regulated during cholestasis, and this was the first topic of exploration. Unexpectedly, the expression of efflux transporters was not consistently up-regulated in protected mice. However, a decrease in total liver bile acid concentrations was observed. These changes in hepatic bile acids indicated that bile acid biosynthesis may be relevant to hepatoprotection. Indeed decreases in total and individual bile acids correlated with hepatoprotection, and Cyp8b1 expression was also increased which could be suggestive of a shift in the bile acid biosynthesis pathway towards the formation of less toxic bile acid species. CAR may also have a role in cell death via apoptosis by altering Bcl-2 protein expression. Although apoptosis was decreased in hepatoprotected mice, an increase in the expression of Mcl-1 and Bcl-xL was not observed, suggesting hepatoprotection is not a direct result of CAR-induced Mcl-1 expression. These findings add significantly to the body of knowledge surrounding cholestatic liver disease and suggest that studies aimed toward manipulation of nuclear receptors are worthy of further exploration.
126

Investigating The Role Of Fibrocystin/Polyductin In Cholangiocarcinoma

Abuetabh, Yasser H Unknown Date
No description available.
127

Efficacy of bile pigment supplementation: In vitro and in vivo considerations

Andrew Bulmer Unknown Date (has links)
No description available.
128

The characterization of the subcellular localization of bile acid CoA:N-acyltransferase

Styles, Nathan Allen. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Feb. 7, 2008). Includes bibliographical references (p. 114-133).
129

Bile in the oesophagus contributes to the development and complications of gastro-oesophageal reflux disease /

Freedman, Jacob, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 5 uppsatser.
130

Cytokine repression of the human sterol 12[alpha] -hydroxylase (cyp8b1) gene; an alternative mechanism for bile acid suppression of CYP8B1

Bhatt, Asmeen. January 2006 (has links)
Thesis (Ph.D.)--Kent State University, 2006. / Title from PDF t.p. (viewed May 25, 2007). Advisor: John Chiang. Keywords: biology, molecular. Includes bibliographical references (p. 208-228).

Page generated in 0.0448 seconds