• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membrane Perturbation By Bile Acids and Their Potential Role in Signaling

Jean-Louis, Samira January 2005 (has links)
Secondary bile acids have long been postulated to be tumor promoters in the colon but their mechanism of action are yet to be delineated. Though most bile acids are chemically similar, they have been found to exert contrasting signaling effects in the colonic epithelium. Particularly, hydrophobic bile acids such as deoxycholic acid (DCA) are found to be tumor promoters while their hydrophilic counterparts such as ursodeoxycholic acid (UDCA) are chemopreventive. Given the fact that colon cells do not possess bile acid transporters, the question that arises is how do bile acids activate intracellular signaling? In our studies, we examined the actions of bile acids at the cell membrane and found that hydrophobic bile acids can perturb membrane structure. This membrane perturbation was found to be characterized by a change in membrane fluidity and by cholesterol aggregation. Additionally, several membrane associated proteins were found to be deregulated in response to DCA further supporting the above conclusion regarding membrane perturbation. Moreover, caveolin, a negative regulator of membrane microdomains was seen to be dephosphorylated and disassociated from the membrane microdomains, implicating membrane microdomains as a possible target of the effects of DCA on the membrane. Consistent with this, we found that DCA was able to cause rapid and sustained activation of the receptor tyrosine kinase, EGFR and that this activation was ligand-independent. Using fluorescent-tagged bile acids we showed increased aggregation and clustering in the membranes treated with FITC-DCA in a manner that was reminiscent of receptor activation in immune cells. Collectively, these data suggest that bile-acid induced signaling is likely to be initiated through alterations of the plasma membrane structure in colon cancer cells.
2

Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes

Ferreira Vasconcelos, Luis Daniel January 2014 (has links)
The ability of cell-penetrating peptides to cross plasma membranes has been explored for various applications, including the delivery of bioactive molecules to inhibit disease-causing cellular processes. The uptake mechanisms by which cell-penetrating peptides enter cells depend on the conditions, such as the cell line the concentration and the temperature. To be used as therapeutics, each novel cell-penetrating peptide needs to be fully characterized, including their physicochemical properties, their biological activity and their uptake mechanism. Our group has developed a series of highly performing, non-toxic cell-penetrating peptides, all derived from the original sequence of transportan 10. These analogs are called PepFects and NickFects and they are now a diverse family of N-terminally stearylated peptides. These peptides are known to form noncovalent, nano-sized complexes with diverse oligonucleotide cargoes. One bottleneck that limits the use of this technology for gene therapy applications is the efficient release of the internalized complexes from endosomal vesicles. The general purpose of this thesis is to reveal the mechanisms by which our in house designed peptides enter cells and allow the successful transport of biofunctional oligonucleotide cargo. To reach this goal, we used both biophysical and cell biology methods. We used spectroscopy methods, including fluorescence, circular dichroism and dynamic light scattering to reveal the physicochemical properties. Using confocal and transmission electron microscopy we observed and tracked the internalization and intracellular trafficking. Additionally we tested the biological activity in vitro and the cellular toxicity of the delivery systems. We conclude that the transport vectors involved in this study are efficient at perturbing lipid membranes, which correlates with their remarkable capacity to transport oligonucleotides into cells. The improved and distinct capacities to escape from endosomal vesicles can be the result of their different structures and hydrophobicity. These findings extend the knowledge of the variables that condition intracellular Cell-penetrating peptide mediated transport of nucleic acids, which ultimately translates into a small step towards successful non-viral gene therapy.
3

Biophysical studies of peptides with functions in biotechnology and biology

Madani, Fatemeh January 2012 (has links)
My thesis concerns spectroscopic studies (NMR, CD and fluorescence) of peptides with functions in biotechnology and biology, and their interactions with a model membrane (large unilamellar phospholipid vesicles). The resorufin-based arsenical hairpin binder (ReAsH) bound to a short peptide is a useful fluorescent tag for genetic labeling of proteins in living cells. A hairpin structure with some resemblance to type II β-turn was determined by NMR structure calculations (Paper I). Cell-penetrating peptides (CPPs) are short (30-35 residues), often rich in basic amino acids such as Arg. They can pass through the cell membrane and deliver bioactive cargoes, making them useful for biotechnical and pharmacological applications. The mechanisms of cellular uptake and membrane translocation are under debate. Understanding the mechanistic aspects of CPPs is the major focus of Papers II, III, and IV. The effect of the pyrenebutyrate (PB) on the cellular uptake, membrane translocation and perturbation of several CPPs from different subgroups was investigated (Paper II). We concluded that both charge and hydrophobicity of the CPP affect the cellular uptake and membrane translocation efficiency. Endosomal escape is a crucial challenge for the CPP applications. We modeled the endosome and endosomal escape for different CPPs to investigate the corresponding molecular mechanisms (Papers III and IV). Hydrophobic CPPs were able to translocate across the model membrane in the presence of a pH gradient, produced by bacteriorhodopsin proton pumping, whereas a smaller effect was observed for hydrophilic CPPs. Dynorphin A (Dyn A) peptide mutations are associated with neurodegenerative disorders, without involvement of the opioid receptors. The non-opioid activities of Dyn A may involve membrane perturbations. Model membrane-perturbations by three Dyn A mutants were investigated (Paper V). The results showed effects to different degrees largely in accordance with their neurotoxic effects. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
4

Évaluation des propriétés biologiques de sels de biguanidium : perturbation membranaire et applications dans le traitement du cancer du pancréas

Hébert, Audrey 08 1900 (has links)
La metformine, un médicament couramment utilisé pour le traitement du diabète de type II, fut récemment identifiée comme un composé ayant des propriétés anticancéreuses très intéressantes, notamment pour le cancer du pancréas. Toutefois, malgré les nombreuses expériences in vitro et sur des modèles murins qui ont confirmé cet effet, les essais cliniques sur les humains sont restés infructueux. Un des facteurs mis en cause pour expliquer ces résultats est la grande hydrophilie de la metformine, qui diminue sa biodisponibilité et limite son transport au travers des membranes cellulaires. Nous nous sommes donc intéressés à la synthèse de sels de biguanidium amphiphiles inspirés de la metformine qui se partitionnent plus facilement dans les bicouches phospholipidiques et qui possèdent de meilleures activités anticancéreuses. Pour ce faire, nous avons tout d’abord étudié la perturbation des membranes par de simples alkylbiguanidium. Nous avons démontré que ces composés peuvent transporter des ions H+/OH- et dépolariser les membranes bactériennes, ce qui leur confère des propriétés antibactériennes et antifongiques. Afin de limiter l’hémolyse associée à ces composés, des sels de biguanidium substitués par le groupement phényléthynylbenzyle ont par la suite été synthétisés. La structure de ceux-ci leur permet de mieux se partitionner dans les membranes et s’accumuler dans les mitochondries, tout en diminuant la toxicité associée à une perturbation membranaire trop forte. Leur activité sur les cellules cancéreuses du pancréas est ainsi beaucoup plus importante que celle de la metformine, de même que leur capacité à inhiber la croissance de xénogreffes chez les souris. Ces résultats nous ont ensuite amené vers la synthèse d’une petite librairie de sels de biguanidium et l’étude de leurs activités anticancéreuses et antibactériennes. Les modifications structurales et les changements de contre-ion apportés à cette librairie ont permis d’obtenir des composés encore plus efficaces et surtout beaucoup plus sélectifs envers les cellules saines, ouvrant ainsi la porte à une nouvelle classe de médicaments anticancéreux à base de sels de biguanidium. / Metformin, a common drug used for the treatment of type II diabetes, has recently been linked to interesting anticancer properties, notably on pancreatic cancer. Although there have been many experiments in vitro and on murine models that have confirmed this effect, human clinical trials featuring metformin have been unsuccessful. One of the reasons brought forward to explain these results is the high hydrophilicity of metformin, which limits its bioavailability and transport through cellular membranes. For this reason, we have been interested in the synthesis of amphiphilic biguanidium salts inspired from metformin that can partition more easily in phospholipid membranes and thus have better anticancer properties. We first studied the membrane perturbation properties of simple alkylbiguanidium salts and showed that these compounds can transport H+/OH- ions and depolarize bacterial membranes, which in turn gives them antibacterial and antifungal properties. To limit the hemolytic activity associated with these compounds, biguanidium salts substituted by the phenylethynylbenzyl moiety were then synthesised. Their structure allows them to partition more easily in membranes and accumulate in mitochondria, while lowering the toxicity associated with high membrane perturbation. For those reasons, their activity on pancreatic cancer cells is much higher than metformin, as is their inhibition of xenograft growth in mice. These results encouraged us to synthesise a small library of biguanidium salts and study their anticancer activity. The structural modifications and counter-anion variations brought to this library have improved the efficiency of these compounds as well as their selectivity towards healthy cells, thus opening the door to a new class of anticancer drugs based on biguanidium salts.

Page generated in 0.1429 seconds