• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 51
  • 43
  • 22
  • 14
  • 12
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 387
  • 143
  • 67
  • 54
  • 47
  • 45
  • 39
  • 34
  • 33
  • 32
  • 29
  • 27
  • 24
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Microbial Derived Modulators of Host Health and Behavior

Mavros, Chrystal Felicia January 2024 (has links)
The human body is home to complex microbial communities that are fundamental to our physiology. Utilizing mouse models, behavior assays, gene expression analyses, and probiotic interventions, this research explores the intricate relationship between the gut microbiome, the central nervous system, and the immune system. I discuss a strain of Escherichia coli Nissle engineered to produce serotonin, revealing its impact on gut function and immune response. I also evaluate butyrate’s potential to alleviate symptoms of Fragile X Syndrome, highlighting the gut-brain axis. Additionally, I study a strain of Bifidobacterium adolescentis and its role in metabolizing bile acids and modulating host immune cells and stress. Collectively, these studies address the complex interplay between the gut microbiome and host health and behavior, illuminating the therapeutic potential of microbiome manipulation and setting the stage for novel interventions in neurodevelopmental disorders and immune function regulation.
242

Design and Application of Bile-Salt/Lanthanide Based Hydrogels

Bhowmik, Sandip January 2013 (has links) (PDF)
Chapter 1: Introduction to the luminescent properties of lanthanides Luminescence properties of trivalent lanthanides have been explored extensively over the past few decades owing to their unique properties. Lanthanides emission is known to be due to intra-configurational f-f transitions. Because the partially filled 4f shell is well shielded from its 26 environment by the closed 5sand 5pshells, the ligands in the first and second coordination sphere perturb the electronic configurations of the trivalent lanthanide ions only to a very limited extent. This leads to interesting properties such as long lifetimes, sharp line-like emissions etc. which in turn make lanthanides very attractive choice for commercial optical applications. Despite this, the scope of applications remained limited because of the low molar extinction coefficient values of the forbidden lanthanide f-f transitions. However, this problem has been successfully addressed by complexing the lanthanide ion with suitable ligands which can sensitize it resulting in a significant increase in the emission intensity (so called “antenna effect”). The strategy worked very well and resulted in widespread applications of lanthanides form biology to optoelectronics. This chapter discusses elementary ideas regarding the mechanism of sensitization and relevant examples that traces various applications of such lanthanide complexes from the current literature. Chapter 2: A self-assembled Europium Cholate hydrogel: a novel approach towards lanthanide sensitization Luminescent lanthanides can be of great value in a number of possible applications but their scope is limited by their intrinsic low molar absorptivities. Though this problem can be circumvented by complexing the lanthanide ion with suitable chelating ligands to improve the luminescence properties drastically, the design of such systems often involves meticulous planning and laborious synthetic steps to obtain a ligand suitable for the job. It is therefore desirable to have a simpler version of a sensitizing system that does not require the complexities of a chelating ligand but can sensitize trivalent lanthanides with comparable efficiency. It was observed in our group that divalent metal ions (Ni2+, Zn2+, Cu2+, Coetc.) form hydrogels on addition of sodium cholate. We extended to obtain hydrogels of trivalent lanthanides. Furthermore, when the gel was doped with pyrene, a ten-fold increase in the intensity of Eu(III) emission was observed (Fig 2). Thus we established a unique way to sensitize lanthanides in a hydrogel media by non-coordinating chromophores. The approach was completely modular in nature and avoids any laborious synthesis. We also tried other derivatives of pyrene as sensitizers and found that 1-pyreneboronic acid also caused similar sensitization of Eu(III). Fig 2. (a) Schematic representation of the sensitization process (the arrangement of molecules in the gel fiber is arbitrary). Eu-cholate (5 mM/15 mM) gel (a) normal light and (b) 354 nm UV excitation in the presence of 6 μM pyrene Further studies revealed, that 2,3-dihydroxynapthalene (DHN) can sensitize Tb(III) in a similar hydrogel. We also demonstrated Tb(III) to Eu(III) energy transfer process occurring in the gel when doped with DHN. This allowed us to achieve a hydrogel system with tunable luminescence properties (by varying relative ratios of Tb(III) and Eu(III) ). When the effect of divalent metal ions on such energy transfer processes were explored, it was observed that the luminescence from the composite gel of Tb(III)/ Eu(III) is tunable by Zn(II) and through proper manipulation of concentrations one can obtain white light emitting gel (Fig 3). Fig 3. Effect of Zn(II) (from left to right 0 mM, 2.8 mM, 11.3 mM) on Tb3+ (4.5 mM)/Eu3+ (0.11mM)/ sodium cholate (13.6 mM) gels. b) Tb/Eu/Zn-cholate gel (Tb3+ (4.4 mM), Eu3+ (0.11 mM), Zn2+ (7.4 mM), NaC (13.6 mM, DHN 0.2 mM) under 365 nm UV lamp (c) CIE 1931 diagram depicting the luminescence as white (black spot). Chapter 3. A “Pro-Sensitizer” based Sensing of Enzymes using Tb(III) Luminescence in a Hydrogel matrix This chapter descirbes design and realisation of a sensor system based on Tb(III) luminescnece for the detection of enzymes. The idea involved synthesizing a covalently modified DHN molecule by attaching appropriate enzyme cleavable units. We coined the term “pro-sensitizer”to describe the modified molecule which would not sensitize Tb(III) in the gel matrix but when proper enzymes are applied the free form of DHN would be released triggering a luminescence response from Tb(III). This would enable us to monitor the acitivities of the particular enzyme by examining the luminescence intensity enhancement with time (Fig 4) Fig 4. A “pro-sensitizer” based approach to detect different types of enzymes in a hydrogel matrix through Tb(III) luminescence. We applied the idea to develop a novel luminogenic gel probe for inexpensive and rapid detection of three different hydrolases, lipase, β–glucosidase and α-chymotrypsin. The corresponding “pro-sensitizer”for each enzyme were synthesized (Fig 5).The sensing technique depends on the gel matrix to provide the nessesary platform for lanthanide sensitization. Thereofore, it enjoys an edge over the contemporary techniques that typically involve specially designed and synthesized multidentate chelating ligands for this purpose. We also determined important kinetic parameters of all the enzymes, thus enabling us to have a better insight into the activity of the enzymes in the hydrogel matrix. Fig 4. Pro-sensitizers molecules for (1) lipase, (2) β-glucosidase and (3)α-chymotrypsin Chapter 4. A novel approach towards templated synthesis of lanthanide trifluoride nanoparticles Nanomaterials with excellent optical properties have been of special interest. Lanthanide derived nanoparticles, owing to their unique physical properties, provide an excellent choice for applications such as biolabels, lasers, optical amplifiers, and optical-display phosphors. Several types of lanthanide nanoparticles or nanocrystals are reported in the literature such as Nd2O3, Eu2O3, Gd2O3, Tb2O3, and Y2O3. Among them lanthanide fluoride nanoparticles have emerged as the best choice because of their low phonon energy, and thus minimum quenching of emissive Lnions thereby allowing maximum efficiency for several optical applications. In previous literature precedence, LnF3 nanoparticles were typically synthesized following conventional approaches which necessitate use of high temperatures, high pressures (hydrothermal techniques) and capping ligands. In this chapter, we demonstrated a simpler synthesis of LnF3 nanoparticles at ambient temperatures without the requirement of added capping agents. The room temperature synthesis of LnF3 was unprecedented and was achieved simply by diffusing NaF solution through the hydrogels of corresponding Ln-cholate gels. The nanoparticles were characterized by transmission electron microscopy (TEM) and by powder XRD analysis which established the presence of very small (3-4 nm) nanoparticles mono-dispersed uniformly over the the gel matrix (Fig 6). The LnF3 containing xerogels of Tb(III) and Eu(III) cholate gels were also shown to be highly emissive. Fig 6. HRTEM images of a) TbF3, b) GdF3, c) NdF3 and d) DyF3 in their corresponding gel media.
243

Modulation de l’absorption intestinale postprandiale du glucose apès Roux-en-Y Gastric Bypass chez le miniporc / Modulation of intestinal glucose absorption by Roux-en-Y Gastric Bypass in the minipig

Baud, Grégory 09 December 2016 (has links)
Le DT2 est caractérise par un défaut combiné de la sécrétion et de l’action de l’insuline. Depuis près d’un demi siècle la chirurgie bariatrique et notamment le Roux-en-Y Gastric Bypass (RYGB) ont montré des effets spectaculaires sur le contrôle glycémique remettant en question le paradigme de la prise en charge médicale du DT2. L’exclusion gastro duodénale induite par le RYGB améliore le métabolisme glucidique indépendemment de la perte de poids. Ainsi les modifications du flux biliaire semblent jouer un rôle, cependant les mécanismes sous-jacents ne sont pas clairs. Nous avons réalisés des RYGB chez le miniporc et nous avons montré que l'absorption intestinale du glucose est diminuée dans l’anse alimentaire (AL) dépourvue de bile. L'absorption du glucose dans l’AL était restaurée par l'ajout de la bile, et cet effet était inhibé lorsque le co transport actif sodium glucose 1 (SGLT1) était bloquée par la phlorizine. SGLT1 restait exprimée dans la AL, cependant la teneur dans la lumière de l’intestin en sodium était nettement diminuée. L’ajout de sodium dans l'AL provoquait le même effet que la bile sur l'absorption du glucose et augmentait également l’excursion glycémique post prandiale chez le miniporc au cours d’un repas test vigil. La diminution de l'absorption intestinale du glucose après RYGB a ensuite été confirmée chez l'homme. Nos résultats démontrent que la l’exclusion biliaire affecte le métabolisme post prandiale du glucose par modulation des co transporteurs intestinaux sodium-glucose. / Type 2 diabetes (T2D) is characterized primarily as a combined defect of insulin secretion and insulin action. For nearly a decade, the somewhat mysterious but spectacular benefit of metabolic surgery, and more specifically of Roux-en-Y gastric bypass (RYGB), on glucose control has been caused a questioning the current paradigm of T2D management. Gastro-intestinal exclusion by RYGB improves glucose metabolism, independent of weight loss. Although changes in intestinal bile trafficking have been shown to play a role, the underlying mechanisms are unclear. We performed RYGB in minipigs and showed that the intestinal uptake of ingested glucose is blunted in the bile deprived alimentary limb (AL). Glucose uptake in the AL was restored by the addition of bile, and this effect was abolished when active glucose intestinal transport was blocked with phlorizin. Sodium-glucose cotransporter 1 remained expressed in the AL, while intraluminal sodium content was markedly decreased. Adding sodium to the AL had the same effect as bile on glucose uptake. It also increased postprandial blood glucose response in conscious minipigs following RYGB. The decrease in intestinal uptake of glucose after RYGB was confirmed in humans. Our results demonstrate that bile diversion affects postprandial glucose metabolism by modulating sodium-glucose intestinal cotransport.
244

Étude de la composition de la bile chez le chat en santé et le chat atteint de cholangite

Huvé, Romain 08 1900 (has links)
No description available.
245

POLYCYCLIC AROMATIC HYDROCARBONS IN SELECTED FISHES FROM THE ATHABASCA AND SLAVE RIVERS, CANADA

2016 March 1900 (has links)
Human activities over the years, especially the unconventional exploitation of oil sands deposits, downstream on the Athabasca River (AR), might have affected the water quality and ecological integrity of the river basin, thereby presenting a threat to the environment and human health. There have been concerns that the oil sands process-affected waters stored in tailing ponds may be percolating to surface waters as well as underground waters, contaminating neighboring watersheds with a cocktail of chemicals including Polycyclic aromatic hydrocarbons (PAHs). PAHs are present both naturally and from human activities as pollutants in the environment. Forest fires, geologic activities, and oil seeps are examples of natural sources of PAHs in the environment. The major sources of PAHs in the Athabasca region are leaching of oil sands deposits and contamination from oil sands production. On occasions, forest fires contribute PAHs in the area. There has been no comparative data on the exposure of PAHs to fish along the AR and Slave River. I used an integrative monitoring of selected fishes as an indicator to achieve four objectives: i) describe the spatial and seasonal distribution of measurable concentrations of products of biotransformation of polycyclic aromatic hydrocarbons (PBPAH) in bile of fish; ii) determine the levels of parent PAHs in the muscle of fish, and extrapolate the data to estimate potential risk to human consumers, and to identify which species and geographic regions, if any, pose the greatest risk to humans; iii) use patterns of contamination to provide a scientific basis for elucidating the source of contamination; and iv) perform fish health investigation by collecting morphometric health measures and perform a systematic assessment of the occurrence of lesions in the fishes. I sampled whitefish (Coregonus clupeaformis), jackfish/northern pike (Esox luscius), walleye (Sander vitreus), goldeye (Hiodon alosoides) and burbot (Lota lota) from Fort McMurray, Fort McKay, and Fort Chipewyan in Alberta, and from Fort Smith and Fort Resolution on the Slave River in the Northwest Territories. The rationale for selecting fishes included: their abundance along the basin (some have short ranges, e.g., northern pike); their dietary/nutritional and cultural significance to communities in the area; their feeding strategy, such as benthic, supra-benthic, or pelagic, trophic status, and patterns of migration and habits of spawning. I addressed the first objective in Chapter 2, where the total PBPAHs were determined. Concentrations of products of biotransformation of 2 and 3-ringed, 4-ringed, and 5-ringed PAHs were measured using synchronous fluorescence spectroscopy. Spatial and seasonal differences were observed with greater concentrations of PBPAHs in samples of bile of fish collected from Fort McKay as well as greater concentrations of PBPAHs in bile of fish collected during summer compared to those collected in other seasons. Overall, PBPAHs were greater in fishes of lower trophic levels and fishes more closely associated with sediments. In particular, goldeye (Hiodon alosoides), consistently contained greater concentrations of all the PBPAHs studied. In Chapter 3, I achieved the second objective by measuring levels of parent PAHs in muscle of selected fishes and extrapolated the results to determine potential human health risks due to fish consumption. Dorsal muscle of fishes from upstream reaches of the AR close to oil sands extraction and upgrading activities, contained greater concentrations of individual PAHs than concentrations in muscle of fishes from further downstream in the Slave River. Risks posed by PAHs to humans were assessed using a B[a]P equivalents approach. According to the risk assessment results, the average lifetime risk of additional cancers for humans who consumed fish was less than 10-6. In Chapter 4, alkylated PAHs were also measured in fish muscle to achieve the third objective. The general presence of naphthalenes and phenanthrenes and the evaluation of molecular ratios (i.e., LMW/HMW alkyl-PAHs) allowed me to conclude that the major source of pollution is petrogenic, probably due to increases in oil sand activities around Fort McMurray and Fort McKay. I achieved the fourth objective in Chapter 5 by studying the health status and potential effects of industrial development on individuals of economically and culturally significant fishes. A resurgence in condition factor of all species after a low in 2011 was observed. Annual variation was also observed in condition factor and the incidence of anomalies or lesions. Morphometric data demonstrated relatively consistent health among fishes in both the Athabasca and Slave rivers. Analysis of condition factor and somatic indices did not demonstrate consistent differences along the river system. Overall, the health of fish as determined by the metrics employed in this study, does not appear to be adversely affected by the current level of development in the Alberta oil sands region. The data presented in this dissertation make invaluable contribution to the much needed monitoring program in the Athabasca and Slave Rivers. Overall, my findings provide baseline data on fish health, concentrations of parent and alkylated PAHs, and products of biotransformation of PAH in five species of large-bodied fishes consumed by humans in communities in the Lower Athabasca and Slave River basin. These results will be useful for establishing the status and trends and spatial distribution of PAHs during monitoring of the lower Athabasca basin and most importantly, as a valuable reference point before any potential permitted discharges of wastewaters from processing of oil sands to the AR.
246

Effect of β-glucan molecular weight and viscosity on the mechanism of cholesterol lowering in humans

Wang, Yanan 13 January 2016 (has links)
The cholesterol-lowering effect of mixed linkage (1→3) (1→4)-β-D-glucans (β-glucan) from barley has been documented, yet the underlying mechanism responsible for this action and factors influencing it, such as physicochemical properties of β-glucan and genetic background of an individual, remain unclear.As a component of dietary fibre, β-glucan also has the potential to shift the gut microbial community, however, whether alterations in the gut microbiota are associated with the physiological effects of β-glucan have yet to be determined. This study was designed to assess the effects of β-glucan molecular weight (MW) and dose on loweringserum cholesterol levels and to elucidate its mechanism of action in human subjects. Additionally, this study examined gene-diet interactions as well as changes in the gut microbiota profile following consumption of barley foods. In a controlled four phase crossover trial, mildly hypercholesterolemic but otherwise healthy subjects (n =30) were randomly assigned to receive breakfasts containing 3g high MW (HMW), 5g low molecular weight (LMW), 3g LMW barley β-glucan or a control diet with wheat and rice (WR control), each for 5 weeks. The washout period between the phases was 4 weeks. The consumption of 3g/d HMW diet lowered total cholesterol (TC) compared with WR control diet (P =0.0046), but not the LMW diet at either 3g/d or 5g/d. Individuals with the SNP rs3808607-G allele of CYP7A1 had greater TC reduction in response to 3g/d HMW β-glucan diet compared to the individuals carrying homozygous TT alleles (P<0.01). Cholesterol absorption and synthesis were not changed, but bile acid synthesis increased by 3g/d HMW diet compared to the control. Consuming 3g HMW/d β-glucan altered gut microbiota at the phylum and genus levels and the impacted microbial members was correlated with favorable shifts of cardiovascular disease risk factors. In conclusion, physicochemical properties of β-glucan play critical roles in the cholesterol-lowering effect and gut microbiota alteration ability of β-glucan. The results suggest the increasing bile acid synthesis rather than inhibiting cholesterol absorption and synthesis is the mechanism responsible for the cholesterol reducing property of β-glucan.The altered microbiota profile by HMW β-glucan is associated with its physiological effect. / February 2016
247

Polyamides and polyesters made of bile acids in the main chain

Ivanysenko, Olga 09 1900 (has links)
La préparation de polymères à base d’acides biliaires, molécules biologiques, a attiré l'attention des chercheurs en raison des applications potentielles dans les domaines biomédicaux et pharmaceutiques. L’objectif de ce travail est de synthétiser de nouveaux biopolymères dont la chaîne principale est constituée d’unités d’acides biliaires. La polymérisation par étapes a été adoptée dans ce projet afin de préparer les deux principales classes de polymères utilisés en fibres textiles: les polyamides et les polyesters. Des monomères hétéro-fonctionnels à base d’acides biliaires ont été synthétisés et utilisés afin de surmonter le déséquilibre stoechiométrique lors de la polymérisation par étapes. Le dérivé de l’acide lithocholique modifié par une fonction amine et un groupement carboxylique protégé a été polymérisé en masse à températures élevées. Les polyamides obtenus sont très peu solubles dans les solvants organiques. Des polyamides et des polyesters solubles en milieu organique ont pu être obtenus dans des conditions modérées en utilisant l’acide cholique modifié par des groupements azide et alcyne. La polymérisation a été réalisée par cycloaddition azoture-alcyne catalysée par l'intermédiaire du cuivre(Ι) avec deux systèmes catalytiques différents, le bromure de cuivre(I) et le sulfate de cuivre(II). Seul le bromure de cuivre(Ι) s’est avéré être un catalyseur efficace pour le système, permettant la préparation des polymères avec un degré de polymérisation égale à 50 et une distribution monomodale de masse moléculaire (PDI ˂ 1.7). Les polymères synthétisés à base d'acide cholique sont thermiquement stables (307 °C ≤ Td ≤ 372 °C) avec des températures de transition vitreuse élevées (137 °C ≤ Tg ≤ 167 °C) et modules de Young au-dessus de 280 MPa, dépendamment de la nature chimique du lien. / Bile acids have drawn attention in the synthesis of polymers for biomedical and pharmaceutical applications due to their natural origin. The objective of this work is to synthesize main-chain bile acid-based polymers. The step-growth polymerization was used to prepare two important classes of polymers used in textile fibers, polyamides and polyesters. Heterofunctional bile acid-based monomers were synthesized and used in order to overcome stoichiometric imbalances during step-growth polymerization. The lithocholic acid derivative bearing amine and protected carboxylic functional groups was polymerized in bulk at high temperatures, yielding polyamides that were poorly soluble in common organic solvents. Soluble triazole-linked polyamides and polyesters were obtained when the cholic acid derivative bearing azide and alkyne functional groups was polymerized under mild conditions via copper(Ι)-catalyzed azide-alkyne cycloaddition. Two different catalytic systems, copper(Ι) bromide and copper(ΙΙ) sulfate, were tested. Only copper(Ι) bromide proved to be an effective catalyst for the system, allowing the synthesis of the polymers with a degree of polymerization of ca. 50 and an unimodal molecular weight distribution(PDI ˂ 1.7). The main-chain cholic acid-based polymers are thermally stable (307 °C ≤ Td ≤ 372 °C) with high glass transition temperatures (137 °C ≤ Tg ≤ 167 °C) and Young’s moduli in excess of 280 MPa, depending on the chemical structure of the linker.
248

The Effect of Cobalt Protoporphyrin and Cobalt Chloride on Heme Oxygenase Expression and Protection from Deoxycholate-Induced Apoptosis

Lawson, Tina 23 July 2010 (has links)
The inner surface of the stomach is lined by a mucous membrane known as the gastric mucosa. The integrity of the gastric mucosa is critical for protecting the stomach from the low pH and proteolytic environment within the lumen. Both clinically and experimentally, exposure of gastric mucosal cells to bile salts is known to cause injury. Bile salts present in duodenogastric reflux are thought to play a significant role in gastric ulcer formation and alkaline gastritis. In vitro, studies using physiologic concentrations of the secondary bile salt, deoxycholic acid, indicate that bile salts can induce apoptosis in cultured human gastric epithelial cells in a caspase-dependent manner. Therefore, there is interest in developing approaches that can protect gastric cells from bile salt-induced damage. It has been shown that induction of the stress protein, heme oxygenase-1, can provide protection against apoptosis. Therefore, the objective of this study was to test the hypotheses that heme oxygenase-1 expression could be induced in human gastric epithelial cells and that furthermore; this would provide protection from deoxycholic acid-induced apoptosis. Heme oxygenase-1 expression was induced pharmacologically or by introduction of a plasmid expressing heme oxygenase-1 into the gastric epithelial cell line, AGS. Induction of heme oxygenase-1 prior to challenge with deoxycholate reduced apoptotic-associated morphological changes, DNA fragmentation, the appearance of oligonucleosomes in the cytoplasm, and activation of caspase-3 and caspase-9. Based on these results, it was concluded that expression of heme oxygenase-1, or the introduction of its products, can provide protection to human gastric epithelial cells against sodium deoxycholic acid induced-apoptosis.
249

Regulation of Pancreatic α and β Cell Function by the Bile Acid Receptor TGR5

Prasanna Kumar, Divya 01 January 2014 (has links)
The discovery that bile acids act as endogenous ligands of the membrane receptor TGR5 and the nuclear receptor FXR increased their significance as regulators of cholesterol, glucose and energy metabolism. Activation of TGR5, expressed on enteroendocrine L cells, by bile acids caused secretion of GLP-1, which stimulates insulin secretion from pancreatic β cells. Expression of TGR5 on pancreatic islet cells and the direct effect of bile acids on the endocrine functions of pancreas, however, are not fully understood. The aim of this study was to identify expression of TGR5 in pancreatic islet cells and determine the effect of bile acids on insulin secretion. Expression of TGR5 was identified by quantitative PCR and western blot in islets from human and mouse, and in α (αTC1-6) and β (MIN6) cells. Release of insulin, glucagon and GLP-1 were measured by ELISA. The signaling pathways coupled to TGR5 activation were identified by direct measurements such as stimulation of G proteins, adenylyl cyclase activity, PI hydrolysis and intracellular Ca2+ in response to bile acids; and confirmed by the use of selective inhibitors that block specific steps in the signaling pathway. Our studies identified expression of TGR5 receptors in β cells and demonstrated that activation of these receptors by both pharmacological ligands (oleanolic acid (OA) and INT-777) and physiological ligand (lithocholic acid, LCA) induced insulin secretion. TGR5 receptors are also expressed in α cells and, activation of TGR5 by OA, INT-777 and LCA at 5 mM glucose induced release of glucagon, which is processed from proglucagon by the selective expression of prohormone convertase 2 (PC2). However, under hyperglycemia, activation of TGR5 in α cells augmented the glucose-induced increase in GLP-1 secretion, which in turn, stimulated insulin secretion. Secretion of GLP-1 from α cells reflected TGR5-mediated increase in PC1 promoter activity and PC1 expression, which selectively converts proglucagon to GLP-1. The signaling pathway activated by TGR5 to mediate insulin and GLP-1 secretion involved Gs/cAMP/Epac/PLC-ε/Ca2+. These results provide insights into the mechanisms involved in the regulation of pancreatic α and β cell function by bile acids and may lead to new therapeutic avenues for the treatment of diabetes.
250

Syntéza ligandů pro farnesoidní X receptor / Synthesis of ligands for farnesoid X receptor

Kašpar, Miroslav January 2018 (has links)
Farnesoid X receptor is mostly expressed in liver cells and its activation may be used for the treatment of cirrhosis causing diseases, especially biliary cirrhosis and nonalcoholic steatosis. These two latter diseases are most common in developed countries and, as of date, no effective treatments are available. Therefore, the aim of this project is the design and synthesis of novel bile acid analogues with subsequent biological evaluation towards farnesoid X receptor. Thus, a series of new compounds were designed using computational modeling studies and chemical synthesis was done to develop structure-activity relationships. Chemical structure analysis and purity was confirmed by conventional analytical methods. Finally, synthetic compounds were profiled against farnesoid X receptor in collaboration with the Pharmaceutical faculty of Charles University in Hradec Králové. Keywords: farnesoid X receptor, FXR, bile acids

Page generated in 0.1191 seconds