• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-line algorithms for bin-covering problems with known item distributions

Asgeirsson, Agni 08 June 2015 (has links)
This thesis focuses on algorithms solving the on-line Bin-Covering problem, when the items are generated from a known, stationary distribution. We introduce the Prospect Algorithm. The main idea behind the Prospect Algorithm is to use information on the item distribution to estimate how easy it will be to fill a bin with small overfill as a function of the empty space left in it. This estimate is then used to determine where to place the items, so that all active bins either stay easily fillable, or are finished with small overfill. We test the performance of the algorithm by simulation, and discuss how it can be modified to cope with additional constraints and extended to solve the Bin-Packing problem as well. The Prospect Algorithm is then adapted to achieve perfect packing, yielding a new version, the Prospect+ Algorithm, that is a slight but consistent improvement. Next, a Markov Decision Process formulation is used to obtain an optimal Bin-Covering algorithm to compare with the Prospect Algorithm. Even though the optimal algorithm can only be applied to limited (small) cases, it gives useful insights that lead to another modification of the Prospect Algorithm. We also discuss two relaxations of the on-line constraint, and describe how algorithms that are based on solving the Subset-Sum problem are used to tackle these relaxed problems. Finally, several practical issues encountered when using the Prospect Algorithm in the real-world are analyzed, a computationally efficient way of doing the background calculations needed for the Prospect Algorithm is described, and the three versions of the Prospect Algorithm developed in this thesis are compared.
2

On semi-online machine scheduling and generalized bin covering

Hellwig, Matthias 17 July 2013 (has links)
In dieser Arbeit untersuchen wir Algorithmen für Scheduling-Probleme. Wir betrachten semi-online Makespan-Scheduling und generalisiertes Bin Covering. Im online Makespan- Scheduling-Problem sind m Maschinen und n Jobs gegeben, wobei letztere jeweils eine individuelle Bearbeitungszeit haben. Es wird zu jedem Zeitpunkt ein Job offengelegt und muss sofort und unwiderruflich einer Maschine zugewiesen werden, ohne Wissen über zukünftige Jobs. Die Last einer Maschine wird als die Summe der Bearbeitungszeiten der ihr zugewiesenen Jobs definiert. Das Ziel ist es, eine Zuweisung von Jobs zu Maschinen zu finden, sodass die höchste Last einer Maschine minimiert wird. Im semi-online Scheduling-Modell wird dieses strikte Szenario relaxiert. Wir untersuchen drei verschied- ene Modelle. Im ersten ist uns die kumulierte Bearbeitungszeit der Jobs vor Ankunft der einzelnen Jobs bekannt. Im zweiten Modell dürfen wir bis zu einem gewissen Grade bereits zugewiesene Jobs anderen Maschinen neu zuordnen.Im dritten semi-online Scheduling-Modell darf ein Algorithmus mehrere Lösungen parallel konstruieren, von denen die beste ausgegeben wird. Beim generalisierten Bin Covering sind uns m Bintypen und n Objekte gegeben. Ein Bintyp Mj hat einen Bedarf dj und einen Profit rj. Jedes Objekt Jt hat eine Größe pt. Ein Bin vom Typ Mj heißt abgedeckt, wenn die Summe der Größen der ihm zugewiesenen Objekte mindestens dj ist. Wenn ein Bin vom Typ Mj abgedeckt ist, erzielen wir einen Profit von rj. Ziel ist es, die Objekte Bins zuzuweisen, sodass der erzielte Gesamtprofit maximiert wird. Wir untersuchen zwei Modelle, die sich in der Verfügbarkeit von Bintypen unterscheiden. Im Unit-Supply-Modell steht uns von jedem Bintyp genau ein Bin zur Verfügung. Im Gegensatz dazu stehen uns im Infinite-Supply-Modell von jedem Bintyp beliebig viele Bins zur Verfügung. Das Unit-Supply-Modell ist daher eine Verallgemeinerung des Infinite-Supply-Modells. Für alle Modelle zeigen wir beinahe scharfe obere und untere Schranken. / In this thesis we study algorithms for scheduling problems. We investigate semi-online minimum makespan scheduling and generalized bin covering. In online minimum makespan scheduling we are given a set of m machines and n jobs, where each job Jt is specified by a processing time. The jobs arrive one by one and we have to assign them to the machines without any knowledge about future incoming jobs. The load of a machine is defined to be total processing time of the assigned jobs. The goal is to place the jobs on the machines such that the maximum load of a machine is minimized. In semi-online minimum makespan scheduling this strict setting is softened. We investigate three different models. In the first setting an algorithm is given an advice on the total processing time of the jobs. In the second setting we may reassign jobs upto a limited amount. The third semi-online setting we study is minimum makespan scheduling with parallel schedules. In this problem an algorithm may maintain several schedules, the best of which is output after the arrival of the entire job sequence. In generalized bin covering we are given m bin types and n items. Each bin type Mj is specified by a demand dj and a revenue rj. Each item Jt has a size pj. A bin of type Mj is said to be covered if the total size of the assigned items is at least the demand dj. Then the revenue rj is earned. The goal is to find an assignment of items to bins maximizing the total obtained revenue. We study two models of bin supply. In the unit supply model there is only one bin of each type available. By contrast in the infinite supply model each bin type is available arbitrarily often, and hence the former is a generalization of the latter. We provide nearly tight upper and lower bounds for all models.
3

Agrégation de ressources avec contrainte de distance : applications aux plateformes de grande échelle / Resource clustering with distance constraint : applications to large scale platforms

Larchevêque, Hubert 27 September 2010 (has links)
Durant cette thèse, nous avons introduit les problèmes de Bin Covering avec Contrainte de Distance (BCCD) et de Bin Packing avec Contrainte de Distance (BPCD), qui trouvent leur application dans les réseaux de grande échelle, tel Internet. L'étude de ces problèmes que nous effectuons dans des espaces métriques quelconques montre qu'il est impossible de travailler dans un tel cadre sans avoir recours à de l'augmentation de ressources, un procédé qui permet d'élaborer des algorithmes construisant des solutions moins contraintes que la solution optimale à laquelle elles sont comparées. En plus de résultats d'approximation intéressants, nous prouvons la difficulté de ces problèmes si ce procédé n'est pas utilisé. Par ailleurs, de nombreux outils ont pour objectif de plonger les grands réseaux qui nous intéressent dans des espaces métriques bien décrits. Nous avons alors étudié nos problèmes dans plusieurs espaces métriques spécifiques, et, en particulier, ceux générés par certains de ces outils, comme Vivaldi et Sequoia. / During this Ph.D we introduced Bin Covering under Distance Constraint (BCCD in French) and Bin Packing under Distance Constraint (BPCD in French). Those two problems find their applications in the context of large scale networks, like Internet. We studied those problems in general metric spaces, and proved that using resource augmentation is mandatory. Resource augmentation allows to build algorithms working on solutions with less constraints than the optimal solution to which it is compared to. We found interesting approximations algorithms using this relaxation, and proved the necessity of this resource augmentation. However many tools are used to embed large networks we are interested in in specific metric spaces. Thus we studied those problems in different specific metric spaces, in particular those generated by the use of Vivaldi and Sequoia, two of those tools.
4

Agrégation de ressources avec contrainte de distance : applications aux plateformes de grande échelle.

Larchevêque, Hubert 27 September 2010 (has links) (PDF)
Durant cette thèse, nous avons introduit les problèmes de Bin Covering avec Contrainte de Distance (BCCD) et de Bin Packing avec Contrainte de Distance (BPCD), qui trouvent leur application dans les réseaux de grande échelle, tel Internet. L'étude de ces problèmes que nous effectuons dans des espaces métriques quelconques montre qu'il est impossible de travailler dans un tel cadre sans avoir recours à de l'augmentation de ressources, un procédé qui permet d'élaborer des algorithmes construisant des solutions moins contraintes que la solution optimale à laquelle elles sont comparées. En plus de résultats d'approximation intéressants, nous prouvons la difficulté de ces problèmes si ce procédé n'est pas utilisé. Par ailleurs, de nombreux outils ont pour objectif de plonger les grands réseaux qui nous intéressent dans des espaces métriques bien décrits. Nous avons alors étudié nos problèmes dans les espaces métriques générés par certains de ces outils, comme Vivaldi et Sequoia.
5

An Optimization-Based Treatment Planner for Gamma Knife Radiosurgery

Jitprapaikulsarn, Suradet 04 March 2005 (has links)
No description available.

Page generated in 0.0753 seconds