• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INTEGRATED DESIGN OF BINDER JET PRINT PRODUCED HYDRAULIC AUTOMATIC VALVE SYSTEM

Heming Liu (14380014) 18 January 2023 (has links)
<p>Binder jet printing (BJP) is an additive manufacturing (AM) method which has the potential to be applied to high annual volumes in the automotive industry. Binder jet printing provides an excellent opportunity to innovate transmission valve body components. The three-layer design and complex hydraulic control system channels of valve body housing formulated a new electro-hydraulic system with the brand-new features inherited from BJP. For the valve body, the features of BJP brought a revolutionary new idea for both the valves and hydraulic channel design. The spool valve was housed with a sleeve that integrates orifices and port controls. The hydraulic channel layout of the valve body assembly was greatly simplified and space-saving. The support components had also been replaced with a lightweight design while maintaining the same functionality. Integrated design of Binder jet print produced hydraulic automatic valve system presented an entirely new design, whose static performance was compared to that of the conventional 948TE ZF9HP48 transmission valve body. Similar performance indicated that a valve body design featuring BJP would have great potential for various industrial applications.</p>
2

Additive Manufacturing Processes for High-Performance Ceramics: Manufacturing - Mechanical and Thermal property Relationship

Mummareddy, Bhargavi 26 August 2021 (has links)
No description available.
3

Improving Structural Integrity of Additively Manufactured High-Temperature Gas Turbine Component

Raju, Nandhini 01 January 2024 (has links) (PDF)
This study aims to introduce a new qualification approach designed to enhance the overall integrity of complex cooling structures in gas turbine blades produced through 3D printing, with a focus on achieving maximum density. The primary objective is to present a comprehensive qualification and validation methodology tailored for components manufactured via binder jetting printing and non-selective laser melting (SLM) powder-based atomic diffusion additive manufacturing. This innovative qualification approach undergoes validation through stages encompassing design, printing, comprehension of thermal debinding and sintering processes, post-processing, optimization, and characterization, all aimed at achieving complex cooling structures with optimal density using stainless steel material and In718 as a case study. Subsequently, the material properties obtained are compared with those of IN718 produced via laser-based manufacturing. Thorough characterization is conducted before and after sintering to assess the impact of sintering on density enhancement. Experimental optimization employing the Taguchi matrix with an L9 orthogonal array involves the selection of three key parameters: sintering time, sintering temperature, and heat treatment. The procedural framework established in this research applies to high-temperature applications wherein components are fabricated using atomic diffusion additive manufacturing or binder jetting printing techniques. Testing and inspection procedures involve neutron scattering, radiography, and CT scanning methods, with a specific emphasis on neutron scattering measurements conducted under externally heated and internally cooled conditions to evaluate residual strains within the gas turbine environment. Understanding the interplay between residual stresses originating from manufacturing processes and thermal stresses provides valuable insights into the impact of additive manufacturing on component performance in thermal environments, thus contributing to the advancement of the proposed study.

Page generated in 0.0886 seconds