• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antigen binding by subunits of rabbit IgM antibody

Coligan, John E. January 1968 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
2

Transformation of an anti-phosphorylcholine antibody to single-chain Fv fragment to study structure-function relationship.

January 2000 (has links)
Poon Kwok Man. / Thesis submitted in: December 1999. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 118-123). / Abstracts in English and Chinese. / ABSTRACT --- p.ii / 摘要 --- p.iv / DECLARATION --- p.vi / ACKNOWLEDGEMENTS --- p.vii / TABLE OF CONTENTS --- p.viii / LIST OF FIGURES --- p.xii / LIST OF TABLES --- p.xv / ABBREVIATIONS --- p.xvi / Chapter CHAPTER 1: --- INTRODUCTION / Chapter 1.1. --- Antibody structure and diversity --- p.1 / Chapter 1.2. --- Antibody genes --- p.5 / Chapter 1.3. --- The antibody response to phosphorylcholine --- p.10 / Chapter 1.3.1. --- Group I antibodies --- p.11 / Chapter 1.3.2. --- Group II antibodies --- p.14 / Chapter 1.3.3. --- Fine specificity of group I antibodies --- p.14 / Chapter 1.4. --- Anti-phosphorylcholine antibody structure --- p.15 / Chapter 1.5. --- Recombinant antibody --- p.22 / Chapter 1.5.1. --- Phage biology --- p.24 / Chapter 1.5.2. --- Phage-displayed antibodies --- p.29 / Chapter 1.5.3. --- Helper phage --- p.32 / Chapter 1.6. --- Objectives and scope of study --- p.34 / Chapter CHAPTER 2 --- METHODOLGY / Chapter 2.1. --- Antibody --- p.41 / Chapter 2.1.1. --- Hybridoma culture --- p.41 / Chapter 2.1.2. --- Production of antibody by induction of ascitic fluid --- p.41 / Chapter 2.1.3. --- Antibody purification --- p.41 / Chapter 2.1.3.1. --- Ammonium sulfate precipitation --- p.42 / Chapter 2.1.3.2. --- Affinity purification by Protein A-sepharose --- p.42 / Chapter 2.1.4. --- Production of Fab fragment by papain digestion --- p.43 / Chapter 2.2. --- Antigens --- p.43 / Chapter 2.2.1. --- Preparation of TsAg form infected ICR mouse --- p.44 / Chapter 2.2.2. --- Purification of Trichinella spairalis PC antigen --- p.44 / Chapter 2.2.2.1. --- Preparation of Mab2 affinity column --- p.44 / Chapter 2.2.2.2. --- Purification of TsAg --- p.45 / Chapter 2.2.3. --- Preparation of PC-HSA --- p.45 / Chapter 2.2.3.1. --- Preparation of p-diazonium phenylphosphorylcholine (DPPC) --- p.45 / Chapter 2.2.3.2. --- Conjugation of PC to HSA --- p.45 / Chapter 2.2.4. --- Commercial available antigens --- p.46 / Chapter 2.2.4.1. --- Pneumovax® 23 --- p.46 / Chapter 2.2.4.2. --- Lipopolysaccharide --- p.46 / Chapter 2.2.5. --- Standardization of PC-antigens --- p.46 / Chapter 2.3. --- Cloning of Mab2-scFv into phage display form --- p.47 / Chapter 2.3.1. --- Total RNA extraction --- p.50 / Chapter 2.3.2. --- cDNA synthesis --- p.50 / Chapter 2.3.3. --- Heavy chain variable region gene amplification --- p.51 / Chapter 2.3.4. --- Light chain variable region gene amplification --- p.51 / Chapter 2.3.5. --- Joining of heavy and light chain gene with linker --- p.52 / Chapter 2.3.6. --- Ligation of scFv gene with pCANTAB-5E vector --- p.52 / Chapter 2.3.7. --- Transformation --- p.53 / Chapter 2.3.7.1. --- E.coli strains --- p.53 / Chapter 2.3.7.2. --- E.coli cell preparation for electroporation --- p.54 / Chapter 2.3.7.3. --- Electroporation --- p.54 / Chapter 2.3.7.4. --- Competent E.coli preparation by CaCl2 --- p.55 / Chapter 2.3.7.5. --- Heat shock --- p.55 / Chapter 2.4. --- Expression of phage display scFv --- p.55 / Chapter 2.5. --- Enrichment and screening of Mab2-scFv phage --- p.56 / Chapter 2.5.1. --- Biopanning --- p.56 / Chapter 2.5.2. --- Restricition fragment analysis --- p.58 / Chapter 2.5.3. --- PCR screening --- p.58 / Chapter 2.5.4. --- DNA sequencing --- p.58 / Chapter 2.5.4.1. --- Manual sequencing --- p.58 / Chapter 2.5.4.2. --- Auto sequencing --- p.59 / Chapter 2.6. --- Mutagenesis --- p.59 / Chapter 2.6.1. --- Preparation of Uracil containing ssDNA --- p.60 / Chapter 2.6.2. --- Phosphorylation of mutagenic oligonucleotide --- p.60 / Chapter 2.6.3. --- Hybridization and secondary strand synthesis...…… --- p.60 / Chapter 2.6.4. --- Transfection and screening of mutants --- p.61 / Chapter 2.7. --- Expression of soluble scFv-E-tag --- p.61 / Chapter 2.7.1. --- SDS-PAGE analysis --- p.62 / Chapter 2.7.2. --- Anti-E-tag ELISA --- p.62 / Chapter 2.8. --- ELISA binding assay --- p.63 / Chapter 2.8.1. --- Specificity of Mab2 antibody Fab --- p.63 / Chapter 2.8.1.1. --- Carrier specifcity assay --- p.63 / Chapter 2.8.1.2. --- Free hapten inhibition assay --- p.64 / Chapter 2.8.2. --- Specificity of the scFv --- p.64 / Chapter 2.8.2.1. --- Antigen binding assay --- p.65 / Chapter 2.8.2.2. --- Free hapten inhibition assay --- p.65 / Chapter 2.8.2.3. --- Inhibition on Ts2 and Mab2 antibody assay --- p.65 / Chapter 2.9. --- Affinity assay --- p.66 / Chapter 2.10. --- Mutants analysis --- p.66 / Chapter CHAPTER 3 --- RESULTS / Chapter 3.1. --- Cloning VH and VL gene of Mab2 into scFv --- p.67 / Chapter 3.1.1. --- Amplification of variable region of H and L chain --- p.67 / Chapter 3.1.2. --- Biopanning --- p.70 / Chapter 3.1.3. --- Genetic composition of isolated clones --- p.70 / Chapter 3.2. --- Mutagenesis --- p.84 / Chapter 3.3. --- Expression and characterisation of wild-type scFv --- p.88 / Chapter 3.3.1. --- ScFv soluble protein --- p.88 / Chapter 3.3.2. --- Phage displayed scFv --- p.91 / Chapter 3.3.3. --- Standardization of PC antigens --- p.91 / Chapter 3.3.4. --- Binding acticity of scFv --- p.94 / Chapter 3.3.4.1. --- Influence of the avidity on carrier specificity binding --- p.96 / Chapter 3.4. --- Antigen specificity --- p.99 / Chapter 3.4.1. --- Free hapten inhibiton --- p.99 / Chapter 3.4.2. --- Inhibition on the binding of Ts2 --- p.102 / Chapter 3.4.3. --- Binding affinity --- p.104 / Chapter 3.5. --- Binding activities of mutants --- p.106 / Chapter CHAPTER 4 --- GENERAL DISCUSSION --- p.109 / REFERENCE --- p.118
3

A study of protein conformational dynamics in antigen : Antibody interactions /

Williams, David Collin. January 1997 (has links)
Thesis (Ph. D.)--University of Virginia, 1997. / Spine title: Dynamics of antigens & antibodies. Includes bibliographical references (214-230). Also available online through Digital Dissertations.
4

Studies on antigen binding cells involved in cellular immunity to ferredoxin peptides

Pearson, Terry W. January 1974 (has links)
Previous studies with conjugates containing the NH2-terminal and COOH-terminal antigenic determinants of oxidized ferredoxin from C. pasteurianum indicated a need for at least two determinants to stimulate DNA synthesis in sensitized lymphocytes. This suggested a mechanism involving cell cooperation, a possibility which has been investigated here by selectively inactivating cells binding one or the other of the determinants. Cells from immunized guinea pigs were tested in vitro for their capacity to bind antigen or to be stimulated by it before and after "antigen suicide" with radioiodinated conjugates containing the NH2-terminal or COOH-terminal determinants of oxidized ferredoxin. A microculture system for assessing antigen induced stimulation of 3H-thymidine uptake by lymphocytes was developed for this work. The data show that: 1) Lymphocytes from unimmunized guinea pigs bind both NH2-terminal and COOH-terminal determinants at a frequency of about 10-4. In immune animals the proportion of antigen binding cells increased about 4-6 fold. The frequency of cells binding the determinants depends markedly on the specific activity of antigens employed. 2) Both T and B lymphocytes bind the antigenic determinants from oxidized ferredoxin. 3) Specific inactivation of cells binding either determinant was achieved by antigen suicide with ¹²⁵I-NH₂-terminal or ¹²⁵I COOH-terminal s-BSA conjugates. Synergy occurs between the NH2-terminal binding cells and COOH-terminal binding cells in the proliferative response of sensitized lymph node cells challenged with oxidized ferredoxin in vitro. Evidence from B cell depletion studies indicates that this is a T cell-T cell interaction. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
5

Antigen binding properties of IgG and IgM antibody to bovine serum albumin

Coligan, John E. January 1971 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).

Page generated in 0.1017 seconds