Spelling suggestions: "subject:"binomial proportion"" "subject:"jinomial proportion""
1 |
Estimating the necessary sample size for a binomial proportion confidence interval with low success probabilitiesAhlers, Zachary January 1900 (has links)
Master of Science / Department of Statistics / Christopher Vahl / Among the most used statistical concepts and techniques, seen even in the most cursory of introductory courses, are the confidence interval, binomial distribution, and sample size estimation. This paper investigates a particular case of generating a confidence interval from a binomial experiment in the case where zero successes are expected. Several current methods of generating a binomial proportion confidence interval are examined by means of large-scale simulations and compared in order to determine an ad-hoc method for generating a confidence interval with coverage as close as possible to nominal while minimizing width. This is then used to construct a formula which allows for the estimation of a sample size necessary to obtain a sufficiently narrow confidence interval (with some predetermined probability of success) using the ad-hoc method given a prior estimate of the probability of success for a single trial. With this formula, binomial experiments could potentially be planned more efficiently, allowing researchers to plan only for the amount of precision they deem necessary, rather than trying to work with methods of producing confidence intervals that result in inefficient or, at worst, meaningless bounds.
|
2 |
Diagnosing examinees' attributes-mastery using the Bayesian inference for binomial proportion: a new method for cognitive diagnostic assessmentKim, Hyun Seok (John) 05 July 2011 (has links)
Purpose of this study was to propose a simple and effective method for cognitive diagnosis assessment (CDA) without heavy computational demand using Bayesian inference for binomial proportion (BIBP). In real data studies, BIBP was applied to a test data using two different item designs: four and ten attributes. Also, the BIBP method was compared with DINA and LCDM in the diagnosis result using the same four-attribute data set. There were slight differences in the attribute mastery probability estimate among the three model (DINA, LCDM, BIBP), which could result in different attribute mastery pattern. In Simulation studies, it was found that the general accuracy of the BIBP method in the true parameter estimation was relatively high. The DINA estimation showed slightly higher overall correct classification rate but the bigger overall biases and estimation errors than the BIBP estimation. The three simulation variables (Attribute Correlation, Attribute Difficulty, and Sample Size) showed impacts on the parameter estimations of both models. However, they affected differently the two models: Harder attributes showed the higher accuracy of attribute mastery classification in the BIBP estimation while easier attributes was associated with the higher accuracy of the DINA estimation. In conclusion, BIBP appears an effective method for CDA with the advantage of easy and fast computation and a relatively high accuracy of parameter estimation.
|
3 |
Utilisation de l’estimateur d’Agresti-Coull dans la construction d’intervalles de confiance bootstrap pour une proportionPilotte, Mikaël 10 1900 (has links)
Pour construire des intervalles de confiance, nous pouvons utiliser diverses approches bootstrap. Nous avons un problème pour le contexte spécifique d’un paramètre de proportion lorsque l’estimateur usuel, la proportion de succès dans l’échantillon ˆp, est nul. Dans un contexte classique d’observations indépendantes et identiquement distribuées (i.i.d.) de la distribution Bernoulli, les échantillons bootstrap générés ne contiennent que des échecs avec probabilité 1 et les intervalles de confiance bootstrap deviennent dégénérés en un seul point, soit le point 0. En contexte de population finie, nous sommes confrontés aux mêmes problèmes lorsqu’on applique une méthode bootstrap à un échantillon de la population ne contenant que des échecs. Une solution possible s’inspire de l’estimateur utilisé dans les méthodes de [Wilson, 1927] et [Agresti et Coull, 1998] où ceux-ci considèrent ˜p l’estimateur qui prend la proportion de succès d’un échantillon augmenté auquel on a ajouté deux succès et deux échecs. La solution que nous introduisons consiste à effectuer le bootstrap de la distribution de ˆp mais en appliquant les méthodes bootstrap à l’échantillon augmenté de deux succès et deux échecs, tant en statistique classique que pour une population finie. Les résultats ont démontré qu’une version de la méthode percentile est la méthode bootstrap la plus efficace afin d’estimer par intervalle de confiance un paramètre de proportion autant dans un contexte i.i.d. que dans un contexte d’échantillonnage avec le plan aléatoire simple sans remise. Nos simulations ont également démontré que cette méthode percentile pouvait compétitionner avantageusement avec les meilleures méthodes traditionnelles. / A few bootstrap approaches exist to create confidence intervals. Some difficulties appear for the specific case of a proportion when the usual estimator, the proportion of success in a sample, is 0. In the classical case where the observations are independently and identically distributed (i.i.d.) from a Bernoulli distribution, the bootstrap samples only contain zeros with probability 1 and the resulting bootstrap confidence intervals are degenerate at the value 0. We are facing the same problem in the survey sampling case when we apply the bootstrap method to a sample with all observations equal to 0. A possible solution is suggested by the estimator found in the confidence intervals of [Wilson, 1927] and [Agresti et Coull, 1998] where they use ˜p the proportion of success in a augmented sample consisting of adding two successes and two failures to the original sample. The proposed solution is to use the bootstrap method on ˆp but where the bootstrap is based on the augmented sample with two additional successes and failures, whether the sample comes from i.i.d. Bernoulli variables or from a simple random sample. Results show that a version of the percentile method is the most efficient bootstrap method to construct confidence intervals for a proportion both in the classical setting or in the case of a simple random sample. Our results also show that this percentile interval can compete with the best traditional methods.
|
4 |
Academic-Staff Rating Index (ARI) SystemMokole, Thapelo Godwin 06 1900 (has links)
Supervising students at a distance presents numerous social, mental, professional, and individual challenges on the student- supervisor relationship, and on the substance, progress, and conveyance. From the literature review, several tools and technologies are developed to improve academic quality; however, most of these tools and technologies focus on journal articles’ quality rather than student/supervisor relationships. This study aims to develop an academic rating index (ARI) that will show a supervisor’s review by students and provide an interactive forum. The application will serve as an academic supervision teaching-level index that provides an aggregated measure of supervisors’ past and current impact. Thus, the ARI aims to aggregate all academic supervisor ratings and the number of ratings that they received in the entire academic career to complement their citation index. The study will use quantitative coding and programming tools to ensure a good quality system in the development phase. The application and findings of the study contribute to academic service quality. / Operations Management / M. Tech. (Information Technology)
|
Page generated in 0.1152 seconds