1 |
Utilisation de l’estimateur d’Agresti-Coull dans la construction d’intervalles de confiance bootstrap pour une proportionPilotte, Mikaël 10 1900 (has links)
Pour construire des intervalles de confiance, nous pouvons utiliser diverses approches bootstrap. Nous avons un problème pour le contexte spécifique d’un paramètre de proportion lorsque l’estimateur usuel, la proportion de succès dans l’échantillon ˆp, est nul. Dans un contexte classique d’observations indépendantes et identiquement distribuées (i.i.d.) de la distribution Bernoulli, les échantillons bootstrap générés ne contiennent que des échecs avec probabilité 1 et les intervalles de confiance bootstrap deviennent dégénérés en un seul point, soit le point 0. En contexte de population finie, nous sommes confrontés aux mêmes problèmes lorsqu’on applique une méthode bootstrap à un échantillon de la population ne contenant que des échecs. Une solution possible s’inspire de l’estimateur utilisé dans les méthodes de [Wilson, 1927] et [Agresti et Coull, 1998] où ceux-ci considèrent ˜p l’estimateur qui prend la proportion de succès d’un échantillon augmenté auquel on a ajouté deux succès et deux échecs. La solution que nous introduisons consiste à effectuer le bootstrap de la distribution de ˆp mais en appliquant les méthodes bootstrap à l’échantillon augmenté de deux succès et deux échecs, tant en statistique classique que pour une population finie. Les résultats ont démontré qu’une version de la méthode percentile est la méthode bootstrap la plus efficace afin d’estimer par intervalle de confiance un paramètre de proportion autant dans un contexte i.i.d. que dans un contexte d’échantillonnage avec le plan aléatoire simple sans remise. Nos simulations ont également démontré que cette méthode percentile pouvait compétitionner avantageusement avec les meilleures méthodes traditionnelles. / A few bootstrap approaches exist to create confidence intervals. Some difficulties appear for the specific case of a proportion when the usual estimator, the proportion of success in a sample, is 0. In the classical case where the observations are independently and identically distributed (i.i.d.) from a Bernoulli distribution, the bootstrap samples only contain zeros with probability 1 and the resulting bootstrap confidence intervals are degenerate at the value 0. We are facing the same problem in the survey sampling case when we apply the bootstrap method to a sample with all observations equal to 0. A possible solution is suggested by the estimator found in the confidence intervals of [Wilson, 1927] and [Agresti et Coull, 1998] where they use ˜p the proportion of success in a augmented sample consisting of adding two successes and two failures to the original sample. The proposed solution is to use the bootstrap method on ˆp but where the bootstrap is based on the augmented sample with two additional successes and failures, whether the sample comes from i.i.d. Bernoulli variables or from a simple random sample. Results show that a version of the percentile method is the most efficient bootstrap method to construct confidence intervals for a proportion both in the classical setting or in the case of a simple random sample. Our results also show that this percentile interval can compete with the best traditional methods.
|
2 |
可加性模型與拔靴法在臺灣地區小型商用車市場需求之應用研究呂明哲, Lu, Ming Che Unknown Date (has links)
本文採用可加性模型分析法建立台灣地區小型商用車市場之需求模型,並
引進Box-Jenkins時間序列模型處理具自我相關之誤差項,以利進行拔靴
推論設計時,能拔靴白干擾(bootstrapping white noise),即重抽樣白
干擾的經驗分配。在此次研究過程中,除配適Box-Jenkins時間序列模型
外,所有分析步驟都是完全自動的,不須作假設和檢驗的工作,所以可降
低傳統上因統計人員主觀判斷錯誤所造成的估計偏誤。可加性模型改進傳
統迴歸模型須先假設模型形式的限制,可從商用車實證分析中,直接由資
料配適平滑函數,顯見其合理性。拔靴法免除傳統推論程序須強使隨機干
擾項分配為常態分配或漸近常態分配之束縛,改由殘差經驗分配模擬隨機
干擾項分配行為,在推論商用車市場上,也獲得不錯的結果。
|
Page generated in 0.3168 seconds