• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pir?lise r?pida da cianobact?ria Spirulina para produ??o de combust?veis e qu?micos

Chagas, Bruna Maria Emerenciano das 09 June 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-01-10T12:38:21Z No. of bitstreams: 1 BrunaMariaEmerencianoDasChagas_TESE.pdf: 6590840 bytes, checksum: f29703c72f7b97886bfe14570fa8d656 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-01-11T13:13:01Z (GMT) No. of bitstreams: 1 BrunaMariaEmerencianoDasChagas_TESE.pdf: 6590840 bytes, checksum: f29703c72f7b97886bfe14570fa8d656 (MD5) / Made available in DSpace on 2017-01-11T13:13:01Z (GMT). No. of bitstreams: 1 BrunaMariaEmerencianoDasChagas_TESE.pdf: 6590840 bytes, checksum: f29703c72f7b97886bfe14570fa8d656 (MD5) Previous issue date: 2016-06-09 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / Recentemente as microalgas e cianobact?rias vem sendo muito estudadas como fonte de biocombust?veis devido a sua elevada produtividade, elevado teor de ?leo e capacidade de crescer em uma grande variedade de climas e terras sem competir com a produ??o de alimentos. A pir?lise ? um m?todo de convers?o termoqu?mica eficaz capaz de converter biomassa em bio-?leo, carv?o e gases combust?veis. O bio-?leo ? uma mistura l?quida de compostos org?nicos potencial para substituir o ?leo diesel. Tem sido demosntrado que bio-?leos de microalgas e cianobact?rias s?o mais est?veis, apresentam teor de oxig?nio mais baixo e poder calor?fico mais alto que bio-?leos de biomassa lignocelul?sica, embora contenha um alto teor de nitrog?nio devido a presen?a de prote?nas na mat?ria-prima. A Spirulina ? uma cianobact?ria que vem sendo muito estudada nos processos de degrada??o t?rmica por apresentar alto teor de prote?nas (74%) e baixo teor de lip?dios (< 1%) podendo ser totalmente convertida em biocombust?vel. Nesta tese, foi investigado o potencial de produ??o de combust?veis e qu?micos a partir da pir?lise r?pida de Spirulina. Os experimentos de pir?lise r?pida convencional em Py-GC/MS foram conduzidos para investigar a influ?ncia dos par?metros de pir?lise, tais como temperatura, taxa de aquecimento e tempo de resid?ncia nos rendimentos dos produtos. O rendimento dos produtos da pir?lise foi maximizado a 450 ?C e 30 s, independente da taxa de aquecimento. Essas condi??es foram escolhidas para o estudo da pir?lise catal?tica com 9 ze?litas diferentes para avaliar a produ??o de hidrocarbonetos espec?ficos, compostos oxigenados e nitrogenados em func?o da raz?o biomassa/catalisador. O rendimento de hidrocarbonetos arom?ticos aumentou ? medida que a propor??o de catalisador/biomassa aumentou de 1:1 para 10:1. A ze?lita H-ZSM5 (23) apresentou o rendimento m?ximo de hidrocarbonetos e a maior redu??o de f?nois quando comparada as outras ze?litas, por?m os compostos nitrogenados totais n?o foram significativamente reduzidos por nenhum catalisador testado. Posteriormente testes de pir?lise r?pida de Spirulina foram conduzidos em um reator de leito fluidizado da USDA-ARS sob diferentes atmosferas de rea??o. Foram testadas a pir?lise convencional com atmosfera inerte (N2) e um processo de pir?lise com atmosfera reativa compostas por gases reciclados da pi?lise, denominado ?Tail Gas Reactive Pyrolysis? (TGRP). O bio-?leo, carv?o e gases produzidos pelo processo TGRP tiveram suas caracter?sticas melhoradas em rela??o aos produtos obtidos na pir?lise convencional, houve um aumento na concentra??o dos hidrocarbonetos arom?ticos e predominaram compostos nitrogenados com um ?nico ?tomo de nitrog?nio (piridinas, pirroles, indoles, nitrilas e amidas). Devido a esta composi??o, esse bio-?leo apresentou um n?vel suficientemente elevado de estabilidade t?rmica para ser destilado. Al?m disso, o bio-?leo produzido pelo processo TGRP foi mais est?vel, menos ?cido e apresentou um poder calor?fico mais alto que bio-?leos de biomassa lignocelul?sica. / Recently microalgae and cyanobacteria have been widely studied as a source of biofuels due to its high yield, high oil content and ability to grow on a wide variety of climates and land without competing with food production. Pyrolysis is an effective thermochemical conversion method capable of converting biomass to fuels, including bio-oil, bio-char and gas. Bio-oil is a liquid mixture of organic compounds that can be a source of valuable chemicals and potential to replace diesel oil depending on its quality. It has been shown that bio-oil from microalgae and other proteinaceous biomass are more stable, have a low oxygen content and higher calorific value than those produced from lignocellulosic feedstock, though contains high nitrogen content due to the presence of protein in its constitution. Spirulina is a cyanobacteria that has been studied in the thermal degradation processes due to its high protein and low lipids content. In this thesis, we investigated the potential for production of fuels and chemicals from the fast pyrolysis of Spirulina. Conventional fast pyrolysis experiments in Py-GC/MS were performed to investigate the influence of pyrolysis parameters such as temperature, heating rate and residence time in distribution of products. The pyrolysis yield was maximized at 450 ?C and 30 s, regardless of heating rate. H-ZSM5 (23) showed the maximum hydrocarbon yield and the largest phenols reduction when compared to the other zeolites, but the total nitrogenated compounds were not significantly reduced by any catalyst tested although some specific nitrogenous have been reduced or eliminated. H-? (38) was also able to increase aromatics production, although its effect was less significant when compared to H-ZSM5 (23) and (50). Subsequently tests of Spirulina fast pyrolysis were conducted in USDA?s bubbling fluidized bed pyrolysis reactor under different reaction atmospheres. Conventional (N2 atmosphere) and reactive (Tail Gas Reactive Pyrolysis - TGRP) pyrolysis were tested. Biooil, bio-char and gas obtained from TGRP process had their fuel characteristics improved when compared to the products from conventional pyrolysis. TGRP Spirulina pyrolysis oil showed an increased concentration of aromatics hydrocarbon and the presence of nitrogenous compounds with single nitrogen atom (pyridines, pyrroles, indoles, nitriles and amides), low oxygen content and low acidity being thermally stable therefore a good feedstock for distillation process. Distillation successfully allowed concentrating various chemicals into distillate fractions which, in turn, could be individually isolated for processing to fuels or chemical co-products.
2

Pir?lise r?pida de capim-elefante sob diferentes atmosferas reativas em leito fluidizado e tratamento catal?tico do bio-?leo resultante / Elephant grass fast pyrolysis under different reactive atmospheres in fluidized bed reactors and product upgrading

Bezerra, M?rcio Barbalho Dantas 09 December 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-03-09T19:37:11Z No. of bitstreams: 1 MarcioBarbalhoDantasBezerra_TESE.pdf: 8185378 bytes, checksum: f592c32011f79a35178d9637d6c7a7cc (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-13T18:39:59Z (GMT) No. of bitstreams: 1 MarcioBarbalhoDantasBezerra_TESE.pdf: 8185378 bytes, checksum: f592c32011f79a35178d9637d6c7a7cc (MD5) / Made available in DSpace on 2017-03-13T18:39:59Z (GMT). No. of bitstreams: 1 MarcioBarbalhoDantasBezerra_TESE.pdf: 8185378 bytes, checksum: f592c32011f79a35178d9637d6c7a7cc (MD5) Previous issue date: 2016-12-09 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / Nos ?ltimos anos, devido ao esgotamento progressivo dos combust?veis f?sseis convencionais, fontes de energia renov?veis tem desempenhado papel importante na matriz energ?tica. Dentre tais fontes, a biomassa lignocelul?sica aparece como uma op??o vi?vel, dispon?vel e de relativamente f?cil cultivo, sem competir com a produ??o de alimentos. A pir?lise r?pida destaca-se como rota de transforma??o de biomassa em produtos de diferentes fases (gases, bio-?leo, carv?o e condensado pirol?tico) com aplica??es diversas. Neste trabalho, bio-?leo foi produzido a partir do capim-elefante (Pennisetum Purpureum Schumach) em reatores de leito fluidizado com capacidades de 1,5 e 40 kg/h, sob diferentes atmosferas (ar, N2 e gases de reciclo da pir?lise), na temperatura de 500?C. No leito de 1,5 kg/h, conduziu-se a pir?lise sem e com a presen?a do catalisador HZSM-5, ambas sob N2. A pir?lise sem catalisador tamb?m foi realizada com reciclo (54, 74 e 85%) dos gases. No leito de 40 kg/h, conduziu-se a pir?lise sob atmosfera oxidativa moderada de ar (71% N2 e 21% O2) variando-se as configura??es da coluna de lavagem dos gases (sem trocador de calor, com trocador simples, com trocador multi-passe) e da recircula??o de condensado (produtos leves) produto da rea??o de pir?lise. Por fim, os bio-?leos obtidos dos experimentos com reciclo dos gases no leito de 1,5 kg/h foram submetidos ? desoxigena??o em leito de lama em 5%Pt/C. Os resultados mostraram que o reciclo dos gases ocasionou um aumento no teor de carbono de 53,96% (na pir?lise sem reciclo) para 70,89% (na pir?lise com 74% de reciclo) e para 77,16% (na pir?lise com a HZMS-5 in situ). O teor de oxig?nio diminuiu de 39,64% para 21,76%. O poder calor?fico superior (PCS) aumentou de 26,1 para 33,11 MJ/kg. Balan?os de massa mostraram que 5,4 a 6,15% da biomassa foi convertida em CH4, C2H4, C2H6 e C3H8 na pir?lise com reciclo dos gases. Todas as amostras de bio-?leos obtidas foram ricas em fen?is, com destaque para aquelas obtidas na atmosfera oxidativa. Os demais componentes e grupos funcionais majorit?rios no bio-?leo foram ?cido ac?tico, acetol, a??cares e cetonas. Baseado nos dados da din?mica da massa da biomassa no tempo um modelo cin?tico (biomassa produzindo bio-?leo + condensado, carv?o e gases) foi proposto e as equa??es diferenciais ordin?rias foram implementadas na linguagem FORTRAN com o objetivo de estimar constantes cin?ticas de velocidade da rea??o.
3

An?lise de um queimador infravermelho funcionando com combust?vel h?brido : GLP/Bio-?leo

Azevedo Neto, Alu?sio 19 November 2010 (has links)
Made available in DSpace on 2014-12-17T14:08:43Z (GMT). No. of bitstreams: 1 AluisioAN_DISSERT.pdf: 2010955 bytes, checksum: 9d4c76c749552efd65c7156a389b51c8 (MD5) Previous issue date: 2010-11-19 / Universidade Federal do Rio Grande do Norte / Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner / A biomassa ? considerada a maior fonte renov?vel de energia, podendo ser usada de forma ambientalmente sustent?vel. A partir da pir?lise da biomassa ? poss?vel a obten??o de produtos com maior densidade energ?tica e propriedades de uso melhores. O l?quido resultante do seu processo ? tradicionalmente chamado de bio-?leo. A utiliza??o de queimadores infravermelhos em aplica??es industriais apresenta muitas vantagens do ponto de vista t?cnico-operacional, como por exemplo, homogeneidade no fornecimento de calor, na forma de radia??o e convec??o, apresentando um maior controle das emiss?es devido ? passagem dos gases de exaust?o atrav?s de um leito cer?mico macroporoso. O presente trabalho apresenta um queimador infravermelho comercial adaptado com um ejetor proposto capaz de queimar numa configura??o h?brida de g?s liquefeito de petr?leo (GLP) e bio-?leo dilu?do. A dilui??o do bio-?leo com ?lcool et?lico absoluto teve como principal objetivo diminuir a viscosidade do fluido, e melhorar a estabilidade e a atomiza??o. Foi introduzido um controlador de temperatura com termopar modulando dois est?gios (fogo baixo/alto), e eletrov?lvulas para alimenta??o dos combust?veis. O queimador infravermelho foi submetido a testes e ensaios, sendo atomizado o bio-?leo dilu?do, e avaliado o seu desempenho mediante a realiza??o de balan?o de energia. Como m?todo de an?lise termodin?mica para estimativa de carga foi utilizado uma placa de alum?nio localizada na sa?da dos gases de combust?o, sendo a distribui??o de temperaturas medida por termopares. A dilui??o reduziu a viscosidade do bio-?leo em 75,4% e aumentou em 11% o poder calor?fico inferior do mesmo, propiciando ao queimador uma combust?o est?vel atrav?s da atomiza??o com o ar comprimido e queima conjunta com GLP. Injetando o combust?vel h?brido houve aumento na transfer?ncia de calor da placa para o meio ambiente em 21,6% e ganho energ?tico ?til de 26,7%, em fun??o da melhora na efici?ncia da 1? Lei da Termodin?mica do queimador infravermelho
4

Pir?lise termoqu?mica de p?s da fibra de coco seco em um reator de cilindro rotativo para produ??o de bio-?leo

Figueiredo, Aneli?se Lunguinho 01 July 2011 (has links)
Made available in DSpace on 2014-12-17T14:08:46Z (GMT). No. of bitstreams: 1 AnelieseLF_DISSERT.pdf: 3198107 bytes, checksum: 808e93eb6952cb8e374d91afa53cabe1 (MD5) Previous issue date: 2011-07-01 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 ?C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm?/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm?/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature. / O presente trabalho tem como objetivo o desenvolvimento de uma metodologia de degrada??o termoqu?mica da fibra do coco seco (dp = 0,25 mm) utilizando reator de cilindro rotativo em escala de laborat?rio, visando a produ??o de bio-?leo. A biomassa foi caracterizada por an?lise elementar (C, H, N), espectroscopia no infravermelho com transformada de Fourier - IVTF, an?lise termogravim?trica ATG, com avalia??o da energia de ativa??o no regime n?o isot?rmico com taxas de aquecimento de 5 e 10 oC/min, an?lise diferencial termogravim?trica - DTG, microscopia eletr?nica de varredura - MEV, poder calor?fico superior - PCS, an?lise imediata (avalia??o da umidade, materiais vol?teis, cinzas e carbono fixo) bem como avalia??o dos teores dos principais constituintes, ou seja, lignina, celulose e hemicelulose. No processo de pir?lise os seguintes par?metros foram estudados: temperatura da rea??o (450, 500 e 550 ?C), vaz?o do g?s de arraste (50 e 100 cm?/min) e velocidade de centrifuga??o para condensa??o do bio-?leo (20 e 25 Hz). O fluxo de alimenta??o da biomassa (540 g/h), a rota??o do cilindro rotativo (33,7 rpm) e o tempo de rea??o (30 33 min) foram mantidos constantes. Os produtos obtidos no processo da pir?lise da fibra do coco seco foram o bio-?leo, os finos de carv?o e a fase gasosa n?o condensada. Um balan?o de massa macrosc?pico aplicado tendo como base o peso de cada produto permitiu obter o rendimento dessas fases. O melhor rendimento de 18,1 % em bio-?leo foi obtido nas seguintes condi??es: temperatura de 500 ?C, vaz?o de g?s inerte 100 cm?/min e velocidade de centrifuga??o de 20 Hz. Nessas condi??es, o rendimento em finos de carv?o foi de 21,7 %, fase gasosa n?o condens?vel 37,6 % e perdas da ordem de 22,6 %. Algumas propriedades f?sicas do bio-?leo foram avaliadas, a saber, a densidade, viscosidade, pH, poder calor?fico superior, teor de finos de carv?o, an?lise por IVTF e CHN. A an?lise cromatogr?fica do bio-?leo mostrou que os principais constituintes de sua composi??o foram o fenol seguido do sirigol, aceto vanilona e vinil guaiacol. A fase s?lida (finos de carv?o) obtida foi caracterizada por an?lise imediata, poder calor?fico superior e IVTF. A fase gasosa n?o condensada apresentou como principais constituintes o CO2, CO e H2. Os resultados foram comparados com dados da literatura.
5

Desenvolvimento de uma unidade pirol?tica com reator de cilindro rotativo: obten??o de bio-?leo

Fontes, L?cio ?ngelo de Oliveira 27 May 2011 (has links)
Made available in DSpace on 2014-12-17T14:09:12Z (GMT). No. of bitstreams: 1 LucioAOF_TESE.pdf: 1700370 bytes, checksum: e23b516b6b57629ea655b3a1c24fcf35 (MD5) Previous issue date: 2011-05-27 / The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil. / A demanda por fontes alternativas de energia impulsiona o desenvolvimento tecnol?gico de tal forma que muitos combust?veis e processos de convers?o energ?tica, antes julgada como inadequados ou mesmo invi?veis, s?o agora concorrentes de combust?veis e processos ditos tradicionais. Assim, a biomassa exerce um papel relevante, sendo considerada uma das fontes de energia renov?vel mais importante de nosso planeta. A biomassa contribui com 29,2 % de todas as fontes renov?veis de energia. A participa??o de energia de biomassa do Brasil na OIE ? de 13,6 %, sendo bem superior a m?dia mundial de participa??o. V?rios tipos de processos de pir?lise v?m sendo estudados nos ?ltimos anos, destacando-se o processo de pir?lise r?pida de biomassa para obten??o de Bio-?leo. Os processos cont?nuos de pir?lise r?pida, mais investigados e aprimorados s?o os de leito fluidizado e leito ablativo, entretanto vem sendo estudados e desenvolvidos outros tipos, visando obter um bio-?leo de melhor qualidade, com maior produtividade, menor consumo de energia, maior estabilidade e confiabilidade de processo e menor custo de produ??o. A estabilidade do produto Bio-?leo ? fundamental para a concep??o de dispositivos consumidores, tais como queimadores, motores de pist?o e turbinas. O presente estudo foi motivado para a produ??o de Bio-?leo, atrav?s da convers?o da biomassa vegetal ou do aproveitamento de seus res?duos industriais e agr?colas, sendo apresentada uma proposta alternativa de processo de pir?lise termoqu?mica, aproveitando a vantagem din?mica das part?culas no leito rotativo o que favorece a raz?o de contato g?s-s?lido e a transfer?ncia de calor e massa. O pirolisador foi projetado para operar em processo cont?nuo, contendo um alimentador de dois est?gios, um sistema desagregador da biomassa integrado com um separador de finos de carv?o e um sistema de condensa??o de vapores pirol?ticos. O Prot?tipo foi submetido a ensaios com serragem de madeira, utilizando um planejamento experimental completo em dois n?veis para investigar a sensibilidade dos fatores: temperatura do processo, fluxo de g?s de arraste e velocidade de centrifuga??o em rela??o ao rendimento m?ssico de Bio-?leo. O melhor resultado foi obtido na condi??o de 570 oC, 25 Hz e 200 cm3/min, sendo a temperatura o par?metro de maior signific?ncia. O balan?o Tese de Doutorado PPGCEP/UFRN L?cio ?ngelo de Oliveira Fontes vi de massa elementar das fases apresentou da ordem de 20 % liquidos pirol?ticos e 37 % de carv?o. Foram determinadas as propriedades dos produtos l?quidos e s?lidos da pir?lise como densidade, viscosidade, pH, PCI, sendo a composi??o caracterizada atrav?s an?lise qu?mica, revelando as propriedades e composi??o de um Bio-?leo.
6

Estudo da influ?ncia da temperatura na degrada??o termoqu?mica da biomassa de avel?s

Avelar, Karen Pereira Batista de 18 October 2013 (has links)
Made available in DSpace on 2014-12-17T15:01:32Z (GMT). No. of bitstreams: 1 KarenPBA_DISSERT.pdf: 3887883 bytes, checksum: 3ebc4a634530a0a4a6493a962284d14f (MD5) Previous issue date: 2013-10-18 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avel?s (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10?C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ? C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450?C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%) / O bio-?leo obtido da pir?lise da biomassa tem aparecido como alternativa interessante para substitui??o dos combust?veis f?sseis. O objetivo deste trabalho ? avaliar a influ?ncia da temperatura no rendimento dos produtos originados do processo de pir?lise do p? obtido dos galhos secos do avel?s (Euphorbia tirucalli), utilizando um reator de cilindro rotativo em escala de laborat?rio. A biomassa foi tratada e caracterizada por: CHNS, umidade, materiais vol?teis, cinzas e carbono fixo, bem como, avalia??o dos teores de lignina, celulose e hemicelulose, al?m de outras t?cnicas instrumentais, tais como: FTIR, TG/DTG, DRX, FRX e MEV. A energia de ativa??o foi avaliada no regime n?o isot?rmico com taxas de aquecimento de 5 e 10 oC/min. Os resultados obtidos mostraram a biomassa como mat?ria prima com potencial para produ??o de biocombust?veis, pois apresenta alto teor de mat?ria org?nica (78,3%) e carbono fixo (7,11%). A energia de ativa??o exigida para degrada??o da biomassa variou entre 232,92 392,84 kJ/mol, no intervalo de temperatura da rea??o estudado e taxa de aquecimento de 5 e 10oC/min. No processo de pir?lise, estudou-se a influ?ncia da temperatura da rea??o (350-520 ?C), mantendo-se constantes as demais vari?veis, ou seja, a vaz?o do g?s de arraste , a velocidade de centrifuga??o para condensa??o do bio-?leo, a vaz?o de biomassa e a rota??o do reator. O rendimento m?ximo em bio-?leo foi obtido na temperatura de 450?C. Nessa temperatura, os resultados alcan?ados foram: teor de bio?leo de 8,12%; carv?o 32,7%; fase gasosa n?o condensada 35,4%; perdas 23,8%; poder calor?fico superior 3,43MJ/kg; pH 4,93; viscosidade 1,5cP. A an?lise cromatogr?fica do bio-?leo produzido nessas condi??es mostra a presen?a, principalmente, de fenol (17,71%), metilciclopentenona (10,56%) e dimetilciclopentenona (7,76%)
7

Estudo da influ?ncia da temperatura na degrada??o termoqu?mica da biomassa de avel?s (euphorbia tirucalli Linn) / Study of the influence of the temperature in the thermochemical degradation of the biomass of avel?s (euphorbia tirucalli Linn)

Avelar, Karen Pereira Batista de 18 October 2013 (has links)
Made available in DSpace on 2014-12-17T15:01:35Z (GMT). No. of bitstreams: 1 KarenPBA_DISSERT.pdf: 3887883 bytes, checksum: 3ebc4a634530a0a4a6493a962284d14f (MD5) Previous issue date: 2013-10-18 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avel?s (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10?C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ? C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450?C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%) / O bio-?leo obtido da pir?lise da biomassa tem aparecido como alternativa interessante para substitui??o dos combust?veis f?sseis. O objetivo deste trabalho ? avaliar a influ?ncia da temperatura no rendimento dos produtos originados do processo de pir?lise do p? obtido dos galhos secos do avel?s (Euphorbia tirucalli), utilizando um reator de cilindro rotativo em escala de laborat?rio. A biomassa foi tratada e caracterizada por: CHNS, umidade, materiais vol?teis, cinzas e carbono fixo, bem como, avalia??o dos teores de lignina, celulose e hemicelulose, al?m de outras t?cnicas instrumentais, tais como: FTIR, TG/DTG, DRX, FRX e MEV. A energia de ativa??o foi avaliada no regime n?o isot?rmico com taxas de aquecimento de 5 e 10 oC/min. Os resultados obtidos mostraram a biomassa como mat?ria prima com potencial para produ??o de biocombust?veis, pois apresenta alto teor de mat?ria org?nica (78,3%) e carbono fixo (7,11%). A energia de ativa??o exigida para degrada??o da biomassa variou entre 232,92 392,84 kJ/mol, no intervalo de temperatura da rea??o estudado e taxa de aquecimento de 5 e 10oC/min. No processo de pir?lise, estudou-se a influ?ncia da temperatura da rea??o (350-520 ?C), mantendo-se constantes as demais vari?veis, ou seja, a vaz?o do g?s de arraste , a velocidade de centrifuga??o para condensa??o do bio-?leo, a vaz?o de biomassa e a rota??o do reator. O rendimento m?ximo em bio-?leo foi obtido na temperatura de 450?C. Nessa temperatura, os resultados alcan?ados foram: teor de bio?leo de 8,12%; carv?o 32,7%; fase gasosa n?o condensada 35,4%; perdas 23,8%; poder calor?fico superior 3,43MJ/kg; pH 4,93; viscosidade 1,5cP. A an?lise cromatogr?fica do bio-?leo produzido nessas condi??es mostra a presen?a, principalmente, de fenol (17,71%), metilciclopentenona (10,56%) e dimetilciclopentenona (7,76%)

Page generated in 0.0737 seconds