Spelling suggestions: "subject:"bioptics"" "subject:"diakoptics""
1 |
Impacts of Bubbles on Optical Estimates of Calcium Carbonate in the Great Calcite BeltBrown, Michael Scott 20 March 2014 (has links)
In this MSc thesis I determine if wind-generated bubbles elevated measurements of above-water normalized water-leaving radiance (nLw) and subsequent remote sensing estimates of particulate inorganic carbon (PIC) in a coccolithophore bloom on the Patagonian Shelf. Although no measurements were made of bubbles, shipboard wind speed was used as a proxy for bubble backscattering. An empirical orthogonal function (EOF) analysis was performed on nLw. The first EOF accounted for 95% of the variance, and was attributed to changes in spectral amplitude. Scores of the first EOF were positively correlated with flow-through PIC backscattering (bb′) > 5x10-4 m-1, indicating that above this threshold PIC was an optically active seawater constituent. There was only evidence for a bubble elevation of nLw at values of bb′ < 5x10-4 m-1 and wind speeds > 12.5 m s-1. There was no evidence for a bubble elevation of PIC estimated using the two-band PIC algorithm.
|
2 |
Interactions between macrobiota (wild and aquacultured) and the physical-planktonic environment: insights from a new 3-D end-to-end modelling frameworkIbarra, Diego 06 December 2011 (has links)
Marine ecosystem-based management requires end to end models, which are models capable of representing the entire ecosystem including physical, chemical and biological processes, anthropogenic activities, and multiple species with different sizes, life histories and from different trophic levels. To adequately represent ecosystem dynamics in shallow coastal regions, end-to-end models may need to include macrobiota species (wild and aquacultured) and may have to allow feedbacks (i.e. two-way coupling) between macrobiota and planktonic ecosystem dynamics. This is because the biomass of macrobiota can locally exceed the biomass of plankton, thus influencing the distribution of planktonic ecosystem tracers and altering the overall food web structure. Here, I describe a hybrid (Eulerian/Individual-Based) ecosystem framework, implemented in the Regional Ocean Modeling System (ROMS), a state-of-the-art 3-D ocean circulation model. The framework was applied to a model of a synthetic embayment containing seagrass, rockweed and kelp beds, a wild oyster reef, a mussel ranch and a fish farm. I found that two-way coupling is essential to reproduce expected spatial patterns of all variables and to conserve mass in the system. I also developed a shellfish ecophysiology model (SHELL E) and compared its results against water samples collected over 5 years in Ship Harbour, a fjord with mussel aquaculture in Nova Scotia, Eastern Canada. Also, from a high-resolution bio-optical survey of the fjord, I found that mussels decrease phytoplankton biomass inside the farm, but also cause a bloom of phytoplankton outside the farm. Using ROMS/SHELL-E, I determined that the increase of phytoplankton around the farm is caused by the waste products of the farmed bivalves, which have a fertilization effect, enhancing phytoplankton production outside the farm during nutrient-limited and light-replete conditions (i.e. late spring to late fall in Ship Harbour). The main conclusion of this thesis is that—in shallow coastal regions—ecosystem models must represent bilateral interactions between macrobiota and physical-planktonic dynamics, in a spatially-explicit setting, to adequately represent mass flows and ecosystem dynamics. The hybrid end-to-end modelling system provides a computationally efficient framework for describing these interactions and, through careful comparisons against observations, can be a powerful tool to test hypotheses and generate insights into coastal ecosystems.
|
3 |
The Role of Particulate Matter in the Development of Hypoxia on the Texas-Louisiana ShelfCochran, Emma Mary 16 December 2013 (has links)
In the northern Gulf of Mexico, hypoxia occurs annually during the summer on the Texas-Louisiana shelf. This study examines the distribution of particulate and dissolved components relative to hydrography, to better understand the processes controlling the development of hypoxia.
Particulate matter on the Texas-Louisiana Shelf has three major sources – river plumes, primary production, and resuspended sediments. The sources and processes controlling distribution and transport of particles are investigated using optical proxies (backscattering, chlorophyll fluorescence, Colored Dissolved Organic Matter fluorescence (CDOM)), temperature, salinity, dissolved oxygen (DO), and in-situ sampling during June and August 2011 cruises of the Mechanisms Controlling Hypoxia program (hypoxia.tamu.edu). Discrete samples of particulate matter (PM) and particulate organic carbon (POC) concentration were obtained for analysis and calibration of optical instruments interfaced with a profiling CTD, a towed undulating CTD (Acrobat), and the ship’s flow-through system along the shelf from south of Galveston, Texas, to east of the Mississippi delta.
The results of this study support a previously hypothesized concept of three primary areas of organic and inorganic particle composition and processes that dominate those areas – river-dominated water, highly productive surface waters, and clear, nutrient-poor low-productivity surface waters. The distribution and bulk composition of particulate matter in the northern Gulf of Mexico, plus the distribution of chlorophyll fluorescence and CDOM suggest that subpycnocline primary production plays a role in determining oxygen concentration in subpycnocline waters away from the river-dominated water.
|
4 |
Spatial and temporal particulate variability at an integrated multi-trophic aquaculture (IMTA) site in Kyuquot Sound, British Columbia, using bio-optical methodsDel Bel Belluz, Justin 03 September 2014 (has links)
The goal of this thesis was to detail spatial and temporal organic particulate dynamics at an integrated multi-trophic aquaculture (IMTA) site on the west coast of Vancouver Island, Canada. To accomplish this goal, in-situ optical measurements of particulate scattering (bp), particulate backscattering (bbp) and the particulate backscattering ratio (bbp:bp) were collected in conjunction with discrete sampling for particulate organic carbon (POC) and chlorophyll a (chl a) concentrations. These measurements were performed over three seasons (autumn, winter and summer) at reference sites and at sites within and directly adjacent to the fish component of the IMTA system.
Chapter 2 of this thesis focused on the examination of bio-optical relationships over various timescales (seasonally, daily and within-day) to describe temporal and vertical particulate variability and to assess the effectiveness of bio-optical methods for environmental monitoring. Autumn showed low bio-optical magnitudes with distinct lower cage increases possibly attributable to aquaculture derived wastes. In spring, sampling was performed over diatom bloom conditions, dominating the bio-optical measurements. During summer, an Emiliania Huxleyi bloom likely occurred, strongly enhancing bbp and bbp:bp magnitudes in the thermally stratified upper water column. Throughout these conditions, bp was predominantly influenced by chl a suggesting sensitivity to phytoplankton concentrations. While bbp was conditioned by chl a during the diatom bloom, it was also highly sensitive to the presence of inorganic and likely detrital materials. Finally, bbp:bp was sensitive to particulate compositions, showing low values (< 0.010) in diatom dominated waters and high values when refractive coccoliths were likely present. Notably, in autumn, bbp:bp was conditioned by detrital particles and along with bbp, showed post-feeding lower cage increases suggesting that these parameters could be useful candidates for particulate waste tracking during low ambient particle conditions.
In chapter 3, the temporal, vertical and horizontal dispersion of the aquaculture derived particulate wastes are detailed. Autumn was the only period to show waste signals, likely due to their quick dilution into the particulate rich fields in spring/summer. During this period, post-feeding particulate waste increases were focused at the bottom of the cage with possible vertical sinking towards the seafloor. Minimal horizontal dispersion towards the scallop portion of the system was observed; however, more comprehensive sampling over differing hydrographic regimes is necessary to characterize waste dispersion. Based on our temporally limited autumn results, the most appropriate placement of uptake species for waste assimilation would be directly below the studied cage.
Our results highlight the need for high spatial and temporal resolution methods for particulate monitoring within IMTA settings as discrete sampling may miss “patchy” waste dispersal streams. The bio-optical measurements performed during this study could fill this need as they can provide high resolution information on particulate concentrations and compositions not achievable solely through the use of discrete water sampling. With further research, optical instrumentation could be incorporated into IMTA systems allowing for the near real time and continuous collection of data on particulate dynamics. This knowledge could greatly aid in the design and implementation of systems optimized for waste removal by uptake species. / Graduate / 0792 / 0768 / 0752 / jdelbel@uvic.ca
|
5 |
Bio-optics, satellite remote sensing and Baltic Sea ecosystems : Applications for monitoring and managementHarvey, Therese January 2015 (has links)
Earth observation satellites cover large areas with frequent temporal repetition and provide us with new insight into ocean and coastal processes. Ocean colour measurements from satellite remote sensing are linked to the bio-optics, which refers to the light interactions with living organisms and dissolved and suspended constituents in the aquatic environment. Human pressures have changed the aquatic ecosystems, by, for example, the increased input of nutrient and organic matter leading to eutrophication. This thesis aims to study and develop the link between bio-optical data and the remote sensing method to the monitoring and management of the Baltic Sea. The results are applied to the European Union’s Water Directives, and the Baltic Sea Action Plan from the Helsinki commission. In paper I indicators for eutrophication, chlorophyll-a concentration and Secchi depth were evaluated as a link to remote sensing observations. Chlorophyll-a measurements from an operational satellite service (paper I) were compared to conventional ship-based monitoring in paper II and showed high correlations to the in situ data. The results in paper I, II and IV show that the use of remote sensing can improve both the spatial and temporal monitoring of water quality. The number of observations increased when also using satellite data, thus facilitating the assessment of the ecological and environmental status within the European Union’s water directives. The spatial patterns make it possible to study the changes of e.g. algae blooms and terrestrial input on larger scales. Furthermore, the water quality products from satellites can offer a more holistic and easily accessible view of the information to decision makers and end-users. In paper III variable relationships between in situ bio-optical parameters, such as coloured dissolved organic matter (CDOM), dissolved organic carbon, salinity and Secchi depth, were found in different parts of the Baltic Sea. In paper IV an in situ empirical model to retrieve suspended particulate matter (SPM) from turbidity was developed and applied to remote sensing data. The use of Secchi depth as an indicator for eutrophication linked to the concentrations of chlorophyll-a and SPM and CDOM absorption was investigated in paper V. The variations in Secchi depth were affected differently by the mentioned parameters in the different regions. Therefore, one must also consider those when evaluating changes in Secchi depth and for setting target levels for water bodies. This thesis shows good examples on the benefits of incorporating bio-optical and remote sensing data to a higher extent within monitoring and management of the Baltic Sea. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
|
6 |
Remote sensing in optically complex waters : water quality assessment using MERIS dataBeltrán-Abaunza, José M. January 2015 (has links)
This PhD study focusses on the use of MEdium Resolution Imaging Spectrometer (MERIS) data for reliable and quantitative water-quality assessment of optically-complex waters (lake, brackish and coastal waters). The thesis is divided into two parts: A. intercalibration of reflectance measurements in different optically-complex water bodies (Paper I), and validation of various satellite processing algorithms for the coastal zone (Paper II). B. Applications: the use of MERIS data in integrated coastal zone management mostly using Himmerfjärden bay as an example. Himmerfjärden bay is one of the most frequently monitored coastal areas in the world and it is also the recipient of a large urban sewage treatment plant, where a number of full-scale nutrient management experiments have been conducted to evaluate the ecological changes due to changes in nutrient schemes in the sewage plant. Paper I describes the development and assessment of a new hyperspectral handheld radiometer for in situ sampling and validation of remote sensing reflectance. The instrument is assessed in comparison with readily available radiometers that are commonly used in validation. Paper II has a focus on the validation of level 2 reflectance and water products derived from MERIS data. It highlights the importance of calibration and validation activities, and the current accuracy and limitations of satellite products in the coastal zone. Bio-optical in situ data is highlighted as one of the key components for assessing the reliability of current and future satellite missions. Besides suspended particulate matter (SPM), the standard MERIS products have shown to be insufficient to assure data quality retrieval for Baltic Sea waters. Alternative processors and methods such as those assessed and developed in this thesis therefore will have to be put in place in order to secure the success of future operational missions, such as Sentinel-3. The two presented manuscripts in the applied part B of the thesis (paper III and IV), showed examples on the combined use of in situ measurements with optical remote sensing to support water quality monitoring programs by using turbidity and suspended particulate matter as coastal indicators (manuscript III). The article also provides a new turbidity algorithm for the Baltic Sea and a robust and cost-efficient method for research and management. A novel approach to improve the quality of the satellite-derived products in the coastal zone was demonstrated in manuscript IV. The analysis included, the correction for adjacency effects from land and an improved pixel quality screening. The thesis provides the first detailed spatio-temporal description of the evolution of phytoplankton blooms in Himmerfjärden bay using quality-assured MERIS data, thus forwarding our understanding of ecological processes in in Swedish coastal waters. It must be noted that monitoring from space is not a trivial matter in these optically-complex waters dominated by the absorption of coloured dissolved organic matter (CDOM). These types of coastal waters are especially challenging for quantitative assessment from space due to their low reflectance. Papers III and IV thus also provide tools for a more versatile use in other coastal waters that are not as optically-complex as the highly absorbing Baltic Sea waters. The benefits of the increased spatial-temporal data coverage by optical remote sensing were presented, and also compared to in situ sampling methods (using chlorophyll-a as indicator). / <p>Research funders:</p><p>European Space Agency (ESA, contract no.21524/08/I-OL)</p><p>NordForsk funding: Nord AquaRemS Ref. no. 80106</p><p>NordForsk funding: NordBaltRemS Ref.no. 42041</p><p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
|
7 |
A semianalytical algorithm to retrieve the suspended particulate matter in a cascade reservoir system with widely differing optical properties /Bernardo, Nariane Marselhe Ribeiro. January 2019 (has links)
Orientador: Enner Herenio de Alcântara / Resumo: O Material Particulado em Suspensão (MPS) é o principal componente em sistemas aquáticos. Elevadas concentrações de MPS implicam na atenuação da luz, e ocasionam alterações das taxas fotossintéticas. Além disso, a presença de MPS no sistema aquático pode aumentar os níveis de turbidez, absorver poluentes e podem ser considerados como um indicativo de descargas de escoamento superficial. Portanto, monitorar as concentrações de MPS é essencial para a gerar informações técnicas que subsidiem o correto manejo dos recursos aquáticos, prevenindo colapsos hidrológicos. O sensoriamento remoto se mostra como uma eficiente ferramenta para monitorar e mapear MPS quando comparada às técnicas tradicionais de monitoramento, como as medidas in situ. Entretanto, diante de uma grande e complexa variabilidade de componentes óticos, desenvolver modelos de MPS por meio do sinal registrado em sensores remotos é um desafio. Diversos modelos foram desenvolvidos para reservatórios, lagos e lagoas específicos. Atualmente, não há um único modelo capaz de estimar MPS em reservatórios brasileiros em cascata. Com o objetivo de estimar as concentrações de MPS de forma acurada, o objetivo desta tese foi desenvolver um modelo semi-analítico capaz de estimar valores de coeficiente de atenuação, Kd, por meio do uso dos coeficientes de absorção e espalhamento e, consequentemente, utilizar os valores de Kd para estimar as concentrações de MPS. A adoção desta estratégica se baseou na atenuação da luz ao longo da... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Suspended particulate matter (SPM) is the main component presented within aquatic system. High levels of SPM concentration attenuate the light affecting the photosynthesis rates. Besides, can increase turbidity levels, absorb pollutions and is an indicative of runoff discharges. Therefore, monitoring SPM concentrations is essential to provide reliable information for a correct water management to prevent hydrological collapse. Remote sensing emerges as an efficient tool to map and monitor SPM when compared to traditional techniques, such as in situ measurements. Nevertheless, considering a widely range of optical components, modeling the remote sensing signal in terms of SPM is a challenge. Several models were developed for specific reservoirs, lakes or ponds. Up to our knowledge, there is not a single model capable to retrieve SPM in Brazilian linked reservoirs in a cascade system. In order to accurately estimate SPM, the aim of the thesis was developed a semianalytical model capable to estimate Kd via absorption and backscattering coefficients, and then, use Kd to derive SPM. This approach was adopted because SPM directly contributes to the light attenuation within the water column. Firstly, optical features were investigated. It was found that each reservoir presented a specific optical active component (OAC) dominance, such as Barra Bonita, the first reservoir in cascade is dominated by organic SPM, while Nova Avanhandava, the last reservoir in cascade is dominated by ino... (Complete abstract click electronic access below) / Doutor
|
8 |
Hyperspectral Image Analysis Algorithm for Characterizing Human TissueWondim, Yonas kassaw January 2011 (has links)
AbstractIn the field of Biomedical Optics measurement of tissue optical properties, like absorption, scattering, and reduced scattering coefficient, has gained importance for therapeutic and diagnostic applications. Accuracy in determining the optical properties is of vital importance to quantitatively determine chromophores in tissue.There are different techniques used to quantify tissue chromophores. Reflectance spectroscopy is one of the most common methods to rapidly and accurately characterize the blood amount and oxygen saturation in the microcirculation. With a hyper spectral imaging (HSI) device it is possible to capture images with spectral information that depends both on tissue absorption and scattering. To analyze this data software that accounts for both absorption and scattering event needs to be developed.In this thesis work an HSI algorithm, capable of assessing tissue oxygenation while accounting for both tissue absorption and scattering, is developed. The complete imaging system comprises: a light source, a liquid crystal tunable filter (LCTF), a camera lens, a CCD camera, control units and power supply for light source and filter, and a computer.This work also presents a Graphic processing Unit (GPU) implementation of the developed HSI algorithm, which is found computationally demanding. It is found that the GPU implementation outperforms the Matlab “lsqnonneg” function by the order of 5-7X.At the end, the HSI system and the developed algorithm is evaluated in two experiments. In the first experiment the concentration of chromophores is assessed while occluding the finger tip. In the second experiment the skin is provoked by UV light while checking for Erythema development by analyzing the oxyhemoglobin image at different point of time. In this experiment the melanin concentration change is also checked at different point of time from exposure.It is found that the result matches the theory in the time dependent change of oxyhemoglobin and deoxyhemoglobin. However, the result of melanin does not correspond to the theoretically expected result.
|
Page generated in 0.0375 seconds