• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 27
  • 8
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 122
  • 122
  • 77
  • 52
  • 33
  • 29
  • 28
  • 22
  • 16
  • 15
  • 15
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An investigation of using pyrolysis bio-oil as part of the binder system for wood-based composites

Mao, An 02 May 2009 (has links)
he objective of this research was to investigate the feasibility of using the pyrolysis bio-oil as part of a binder system for wood-based composites. Liquid products obtained from pyrolysis process of pine wood were mixed with reactants, such as isocyanate. The adhesive binder system was blended with flakes to fabricate flakeboard. The effect of the resin content and the mix ratio of the adhesive on the physical and mechanical properties of the flakeboard were examined. Dynamic mechanical analysis (DMA) was also employed to investigate the thermal properties of the adhesives. The results indicated that a bio-oil content of 25% showed comparable properties to those produced by pure pMDI adhesive. A good correlation between the DMA results and the mechanical properties of the flakeboard was also obtained. The increase of bio-oil content in the adhesive system improved the curing speed but reduced the adhesive stiffness.
12

Use of microbial consortia for conversion of biomass pyrolysis liquids into value-added products

Pietrzyk, Julian Darius January 2018 (has links)
Lignocellulosic biomasses are considered promising feedstocks for the next generation of biofuels and chemicals; however, the recalcitrance of lignocellulose remains a barrier to its utilisation over conventional sources. Pyrolysis is the heating of biomass to several hundred degrees Celsius in the absence of oxygen, which can thermally depolymerise lignocellulose. Products of pyrolysis are a solid biochar, liquid bio-oil and syngas. Biochar has roles in both carbon sequestration and soil amendment however bio-oil has no defined use, despite a high concentration of fermentable sugars. Bio-oil is a complex organic microemulsion with a host of biocatalyst inhibitors that makes its microbial degradation a challenge. In this work, the use of aerobic cultures using microbial communities isolated from natural environments saw limited potential; however, the use of anaerobic digestion (AD) successfully generated a higher volume of biogas from reactors with bio-oil than controls. Biogas yield test reactors were set up with anaerobic digestate from a wastewater treatment plant as the substrate for degradation and conversion of bio-oils. Next-generation 16S rRNA gene sequencing was utilised to characterise the communities in the reactors while the ultrahigh resolution mass spectrometry technique of Fourier transform ion cyclotron resonance (FT-ICR) was used for characterisation of the chemical changes occurring during AD. Both sets of high-resolution data were additionally combined for multivariate analysis and modelling of the microbial genera that correlated best with the changes in digestate chemistry. This represents a novel analysis method for the microbial degradation of complex organic products. Bio-oil from common lignocellulosic feedstock was the most easily degradable by the AD communities, with significant inhibition observed when bio-oils from anaerobic digestate and macroalgae were used. Additionally it was found that the inclusion of biochars that were pre-incubated in anaerobic digestate prior to use in AD were capable of significantly reducing the lag time observed for biogas production in bio-oil-supplemented reactors. The addition of biochars that were not pre-incubated had no effect on biogas production. Specific inhibition of methanogenesis was also capable of causing the digestates to accumulate volatile fatty acids (VFAs) as a product of greater value than biogas. Scale-up experiments will be required to confirm the precise practicalities of the addition of bio-oil to AD as well as to establish the potential for isolation and purification of VFAs.
13

Surface interactions of biomass derived oxygenates with heterogeneous catalysts

Foo, Guo Shiou 07 January 2016 (has links)
Energy demand is projected to increase by 56% before 2040 and this will lead to the fast depletion of fossil fuels. Currently, biomass is the only sustainable source of organic carbon and liquid fuels. One major method of converting biomass involves the utilization of heterogeneous catalysts. However, there is still a lack of understanding in the reaction mechanisms and surface interactions between biomass-derived oxygenates and catalysts. Specifically, three important reactions are investigated: i) dehydration of glycerol, ii) hydrolysis of cellulose and cellobiose, and iii) hydrodeoxygenation of bio-oil. Some important concepts are gathered and provide insight into the most attractive conversion strategies. These concepts include the role of Lewis and Brønsted acid sites, synergistic effect between defect sites and functional groups, the advantage of weak acid sites, steric effect imposed by aromatic substituents, and the evolution of surface species in catalyst deactivation. These studies show that a deep understanding of surface chemistry can help to elucidate elementary reaction steps, and there is great potential in using heterogeneous catalysts for the conversion of biomass into targeted fuels and chemicals.
14

Molten-salt Catalytic Pyrolysis (MSCP): A Single-pot Process for Fuels from Biomass

Gu, Xiangyu 29 April 2015 (has links)
A novel process for single-pot conversion of biomass to biofuels was developed called the molten salt catalytic pyrolysis (MSCP) method. The proposed single-pot MSCP process proved to be an inherently more efficient and cost-effective methodology for converting lignocellulosic biomass. In this study, several parameters that affect yield of bio-oil were investigated including carrier gas flow rate; pyrolysis temperature; feed particle size; varying types of molten salt and catalysts. Use of molten salt as the reaction medium offered higher liquid yield and experiments containing ZnCl2 showed higher yield than other chloride salts. The highest yield of bio-oil was up to 66% obtained in a ZnCl2-KCl-LiCl ternary molten salt system compared with 32.2% at the same condition without molten salts. In addition, the effect of molten salt on the composition of bio-oil was also studied. It was observed that molten salt narrowed the product distribution of bio-oil with furfural and acetic acid as the only two main components in the liquid with the exception of water. Finally, a thermogravimetric kinetic study on the pyrolysis of biomass in MSCP was conducted.
15

Catalisadores de Ni promovidos com Mg e Nb para reforma a vapor do ácido acético como molécula modelo do bio-óleo / Ni Catalysts promoted with Mg and Nb for steam reforming of acetic acid as a molecular model of bio-oil

Nogueira, Francisco Guilherme Esteves 26 September 2014 (has links)
O desenvolvimento de tecnologias para geração de hidrogênio no Brasil tem se tornado um fator relevante, pois se trata de uma fonte de combustível limpa que pode ser obtida a partir de diversas matérias-primas renováveis. Entre essas tecnologias pode-se destacar a reforma a vapor do bio-óleo, proveniente da pirólise da biomassa. O bio-óleo consiste em uma mistura complexa de diversos compostos orgânicos oxigenados tais como: aldeídos, ácidos carboxílicos, cetonas, carboidratos, alcoóis, entre outros, sendo o ácido acético um dos compostos majoritários (∼12-15%), o qual pode ser utilizado como molécula modelo do bio-óleo em reações de reforma a vapor. Entretanto, a reforma a vapor do ácido acético apresenta algumas dificuldades, como a formação de coque na superfície dos catalisadores, o que pode resultar na desativação do mesmo. Dentro deste contexto, este trabalho teve como objetivo desenvolver catalisadores a base de níquel (Ni) promovidos com magnésio (Mg) e nióbio (Nb) suportados em alumina (γ-Al2O3), para aplicação na reforma a vapor do ácido acético, visando minimizar e/ou modificar a estrutura dos depósitos carbonáceos, bem como aumentar a atividade e seletividade para o hidrogênio. Para isso, sintetizaram-se inicialmente três catalisadores com diferentes teores de Ni, (10, 15 e 20%), suportados em alumina, sendo que o catalisador com 15% de Ni em massa foi o que apresentou melhor seletividade e atividade para a reforma a vapor do ácido acético. A partir da melhor carga de Ni, adicionaram-se quatro diferentes teores de Mg e Nb 1,0%; 2,5%; 5,0% e 10% em massa. Entre os catalisadores promovidos com Mg, o catalisador com 5,0% de Mg (15%Ni5%Mg/Al), apresentou uma conversão de 96% para o ácido acético, com seletividade para o hidrogênio em torno de 65% a 600 oC. Além disso, este catalisador apresentou menor taxa de formação de coque e menor tamanho de partícula de Ni0, comparado ao catalisador não promovido (15%Ni/Al), evidenciando que a adição de Mg pode prevenir a sinterização das partículas de Ni. Entre os catalisadores promovidos com Nb, o catalisador 15%Ni2,5%Nb/Al apresentou maior seletividade para o hidrogênio (∼73%) a 600o C comparado aos demais. Apesar de ter apresentado um maior tamanho de partícula Ni0, a adição de Nb aumentou a capacidade de decomposição do metano, proveniente da reação de decomposição e metanação do ácido acético, favorecendo a produção de hidrogênio, além de promover a formação de nanoestruturas de carbono. Assim, a adição de promotores catalíticos como os estudados neste trabalho pode contribuir para o aumento na produção de hidrogênio, seja pela redução nos depósitos carbonáceos ou pela modificação das estruturas de carbono formados na superfície dos materiais. / The development of technologies for generating hydrogen in Brazil has become an important factor because it is a source of clean fuel which can be obtained from different renewable raw materials. Among these technologies, the steam reforming of bio-oil from the pyrolysis of biomass can be highlighted. The bio-oil is a complex mixture of different oxygenated organic compounds such as aldehydes, carboxylic acids, ketones, carbohydrates and alcohols with acetic acid being one of the major compounds (∼12-15%), which may be used as a model molecule of bio-oil steam reforming reactions. However, the steam reforming of acetic acid presents some difficulties, such as coke formation on the surface of the catalysts, which may result in its deactivation. Thus, this work aimed to develop catalysts based on nickel (Ni) promoted with magnesium (Mg) and niobia (Nb) supported on alumina (γ-Al2O3), for application in steam reforming of acetic acid in order to minimize the formation of carbonaceous residues, as well as increase the activity and selectivity for hydrogen. For this purpose, initially three catalysts were synthesized with different Ni content, (10, 15 and 20%), and the catalyst with 15% Ni mass showed the best activity and selectivity for the steam reforming of acid acetic acid. From the best Ni loading, was added four different concentrations of Mg and Nb, 1%; 2.5%; 5% and 10% by weight. Among the catalysts promoted with Mg, the catalyst with 5% Mg (15% Ni5% Mg/Al) at a temperature of 600 °C, showed a 96% conversion of acetic acid, with selectivity to hydrogen of around 65 %. In addition, this catalyst showed lower rate of coke formation and lower Ni particle size compared to the non-promoted catalyst (15% Ni/Al), showing that the addition of Mg can prevent sintering of Ni particles. Among the catalysts promoted with Nb, the catalyst 15% Ni 2, 5% Nb/Al showed higher selectivity to hydrogen (∼73%) at 600 °C compared to the others. Despite having a larger particle size, the addition of Nb increased the capacity of decomposition of methane from of the decomposition reaction and methanation of acetic acid favoring the production of hydrogen and promoted the formation of nanostructures. Thus, the addition of catalytic promoters can contribute to the increase in hydrogen production, either by a reduction in carbonaceous deposits or the modification of structures formed on the surface of the materials.
16

Elucidating the solid, liquid and gaseous products from batch pyrolysis of cotton-gin trash.

Aquino, Froilan Ludana 15 May 2009 (has links)
Cotton-gin trash (CGT) was pyrolyzed at different temperatures and reaction times using an externally-heated batch reactor. The average yields of output products (solid/char, liquid/bio-oil, and gaseous) were determined. The heating value (HV) of CGT was measured to be around 15-16 MJ kg- 1 (6500-7000 Btu lb-1). In the first set of tests, CGT was pyrolyzed at 600, 700, and 800°C and at 30, 45, and 60 min reaction period. The maximum char yield of 40% by weight (wt.%) was determined at 600°C and 30 min settings, however, the HV of char was low and almost similar to the HV of CGT. A maximum gas yield of 40 wt.% was measured at 800°C and 60 min and the highest liquid yield of 30 wt.% was determined at 800°C and 30 min. In the modified pyrolysis test, the effects of temperature (500, 600, 700, and 800°C) on the product yield and other properties were investigated. The experiment was performed using the same reactor purged with nitrogen at a rate of 1000 cm3 min-1. Gas yield increased as temperature was increased while the effect was opposite on char yield. The maximum char yield of 38 wt.% was determined at 500°C and 30 min. The char had the largest fraction in the energy output (70-83%) followed by gas (10-20%) and bio-oil (7- 9%). Maximum gas yield of 35 wt.% was determined at 800°C. The average yield of CO, H2 and total hydrocarbons (THC) generally increased with increased temperature but CO2 production decreased. Methane, ethane, and propane dominated the THC. The bio-oil yield at 600°C was the highest at about 30 wt.% among the temperature settings. The HV of bio-oil was low (2-5 MJ kg-1) due to minimal non-HC compounds and high moisture content (MC). A simple energy balance of the process was performed. The process was considered energy intensive due to the high amount of energy input (6100 kJ) while generating a maximum energy output of only 10%. After disregarding the energy used for preparation and pyrolysis, the energy losses ranged from 30-46% while the energy of the output represent between 55-70% of the input energy from CGT.
17

Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol Blend

Khan, Umer 20 November 2012 (has links)
A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized swirl combustion chamber was designed to replace the original evaporative burner due to bio-oil’s nondistillable nature. This also required modifications of the engine’s control systems. Efficiencies for the bio-oil/ethanol blend were found be higher than those of diesel due to the higher heat loss incurred with diesel. Based on a modified efficiency, which disregarded the heat loss through the combustion chamber, power efficiencies were found to be comparable. The maximum time of operation with the bio-oil/ethanol blend was approximately 97 minutes due to the clogging of the narrow passages. Carbon monoxide emissions were higher for the bio-oil/ethanol blend due to the operation conditions of the combustion chamber. Oxides of nitrogen emissions were also higher for the bio-oil/ethanol blend due to its inherent nitrogen content.
18

Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol Blend

Khan, Umer 20 November 2012 (has links)
A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized swirl combustion chamber was designed to replace the original evaporative burner due to bio-oil’s nondistillable nature. This also required modifications of the engine’s control systems. Efficiencies for the bio-oil/ethanol blend were found be higher than those of diesel due to the higher heat loss incurred with diesel. Based on a modified efficiency, which disregarded the heat loss through the combustion chamber, power efficiencies were found to be comparable. The maximum time of operation with the bio-oil/ethanol blend was approximately 97 minutes due to the clogging of the narrow passages. Carbon monoxide emissions were higher for the bio-oil/ethanol blend due to the operation conditions of the combustion chamber. Oxides of nitrogen emissions were also higher for the bio-oil/ethanol blend due to its inherent nitrogen content.
19

Bio-oil Transportation by Pipeline

Pootakham, Thanyakarn Unknown Date
No description available.
20

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

Brown, Duncan 10 December 2013 (has links)
Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost delivery as transport distances of raw biomass are reduced. The overall cost of bio-fuel production is determined by the feedstock delivery pathway and also the bio-fuel production process employed. Results show that the minimum cost of petrol and diesel production is 0.86 $ litre-1 when a bio-oil feedstock is upgraded. This corresponds to a 2750 TPD upgrading facility requiring an annual harvest of 4.30 million m3. The minimum cost of hydrogen production is 2.92 $ kg-1, via the gasification of a woodchip feedstock and subsequent water gas shift reactions. This corresponds to a 1100 ODTPD facility and requires an annual harvest of 947,000 m3. The levelised cost of bio-fuel strongly depends on the size of annual harvest required for bio-fuel facilities. There are optimal harvest volumes (bio-fuel facility sizes) for each bio-fuel production route, which yield minimum bio-fuel production costs. These occur as the benefits of economies of scale for larger bio-fuel facilities compete against increasing transport costs for larger harvests. Optimal harvest volumes are larger for bio-fuel production routes that use feedstock sourced from mobile facilities, as mobile facilities reduce total transport requirements. / Graduate / 0791 / drbrown@uvic.ca

Page generated in 0.0179 seconds