• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Noninvasive Methods for Monitoring Tissue Engineered Constructs using Nuclear Magnetic Resonance

Stabler, Cheryl Lynn 12 April 2004 (has links)
Implanted tissue engineered substitutes constitute dynamic systems, with remodeling mediated by both the implanted cells and the host. Thus, there exists a significant need for methods to monitor the function and morphology of tissue engineered constructs. Noninvasive monitoring using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and imaging can prove to be the solution to this problem. Spectroscopy allows for assessment of cellular function through the monitoring of inherent metabolic markers, such as total-choline, while high resolution imaging enables the evaluation of construct morphology and interfacial remodeling. We applied these 1H NMR methods to monitor betaTC3 mouse insulinoma cells within hydrogel-based materials as a model pancreatic tissue substitute. In vitro research established a strong correlation between total-choline, measured by 1H NMR spectroscopy, and viable betaTC3 cell number, measured by MTT. Extending these methods to in vivo monitoring, however, was met with additional challenges. First, the implanted cells needed to be contained within a planar construct above a threshold density to allow for adequate quantification of the total-choline peak. Secondly, cell-free buffer zones between the implanted cells and the host tissue needed to be incorporated to prevent host tissue signal contamination. Finally, quantitative techniques needed to be developed to accurately account for contaminating signal from diffusing molecules. To overcome these challenges, a disk-shaped agarose construct, initially containing a minimum of 4 million betaTC3 cells and coated with an outer layer of pure agarose, was fabricated. Mathematical simulations aided the implant design by characterizing diffusive transport of nutrients and metabolites into and out of the construct. In vivo 1H NMR studies of these constructs implanted in mice established a strong correlation between total-choline, measured noninvasively using 1H NMR spectroscopy, and viable cell number, measured invasively using MTT. This study establishes total-choline as a reliable marker for noninvasively quantifying dynamic changes in viable betaTC3 cell number in vivo. 1H NMR imaging was used to monitor the implants structural integrity over time, while also assessing the hosts fibrotic response. We expect these studies to establish quantitative criteria for the capabilities and limitations of NMR methodologies for monitoring encapsulated insulinomas, as well as other tissue implants.
2

Improving the bioartificial pancreas: Investigation of the effects of pro-survival and insulinotropic factor delivery and the development of PEGylated alginate microcapsules to support the function and survival of encapsulated islets and beta cells

Duncanson, Stephanie 21 September 2015 (has links)
The development of a bioartificial pancreas (BAP) has the potential to substantially improve the treatment of insulin-dependent diabetes. Composed of insulin-secreting cells encapsulated in a hydrogel material, a BAP may provide superior glycemic regulation compared with conventional exogenous insulin-delivery therapies. Towards this goal, β- cells or islets encapsulated in alginate microcapsules remain a promising approach. Due to the limited supply of human islets, alternative cell sources are under investigation for incorporation into a BAP, including porcine islets and β- cell lines. Several challenges remain to clinical implementation, including loss of islet or β- cell function and viability following transplantation and host response to the transplanted microcapsules. The objective of this work was to evaluate strategies to improve a BAP by supporting the function and survival of encapsulated islets and β -cells. Towards this goal, two areas were explored: 1) the provision of pro-survival and insulinotropic factors, namely, CXCL12 and GLP-1 (or a GLP-1 analog, Exendin-4), to encapsulated islets and β-cells and 2) modification of the alginate microcapsule to confer long-term resistance to host cell adhesion. To achieve the first objective, methods to deliver both pro-survival and insulinotropic factors to a BAP were developed and their effects on encapsulated β-cells and porcine islets were studied, both in vitro and in vivo. Results demonstrate that delivery of pro-survival and insulinotropic factors is a promising strategy to prolong the survival and function of a BAP. To reduce host cell adhesion to the microcapsule, we employed covalent conjugation of PEG to the surface of alginate-PLL capsules to replace the un-crosslinked layer of alginate used in traditional alginate-PLL-alginate (APA) microcapsules. Results demonstrate that while PEGylation of alginate-PLL microcapsules initially reduced host cell adhesion over 2 weeks in vivo compared with APA capsules, the PEG coating did not provide long-term protection over 3 months. Taken together, these studies represent a multipronged approach towards improving the duration of BAP function, with the ultimate goal of advancing this technology to the clinic.
3

Amélioration de la viabilité des îlots pancréatiques dans le pancréas bioartificiel / Improvement of pancreatic islets viability in the bioartificial pancreas

Rodriguez-Brotons, Aida 01 April 2016 (has links)
La transplantation d’îlots pancréatiques est considérée comme une thérapie prometteuse quant au traitement du diabète de type 1. En revanche, l’utilisation de traitements immuno-suppresseurs ainsi que le manque de donneur sont un frein à l’expansion de cette thérapie à plus de patients diabétiques. Pour résoudre ces deux problèmes, la stratégie développée durant ces vingt dernières années est le pancréas bioartificiel. Il consiste en une immuno-isolation de la greffe dans une enveloppe artificielle, protégeant non seulement la greffe du système immunitaire, mais aussi le receveur de la greffe. Les îlots ou les cellules productrices d’insuline transplantée(e)s ne sont pas en contact avec le système immunitaire et aucune immunosuppression n’est nécessaire. L’objectif de ce travail était de déterminer les marqueurs de survie et de mort des îlots dans des conditions mimant celles du MAILPAN®, un pancréas bioartificiel développé par Defymed et d’étudier différentes molécules qui pourraient augmenter la survie des îlots. Nous avons démontré que cet environnement bioartificiel engendrait un confinement et de l’hypoxie créant un stress cellulaire et donc une perte précoce des îlots. Nous avons identifié plusieurs cibles pour améliorer la viabilité et la fonction comme par exemple les transporteurs d’oxygène ou des molécules anti-inflammatoires. Plus le nombre d’îlots dans le MAILPAN® était élevé, plus les effets délétères sur la survie des îlots étaient importants. En conséquence, nous avons testé différentes molécules impliquées dans les voies de l’hypoxie et de l’inflammation pour augmenter la survie et restaurer la fonction des îlots pancréatiques dans un environnement confiné et hypoxique (600IEQ/cm2). L’ajout d’HEMOXcell®, un nouveau transporteur d’oxygène et du peptide tat-CREB ont montré une restauration de la fonction des îlots ainsi qu’une diminution de l’hypoxie et de l’inflammation après 24h de culture. Ainsi ce travail a permis l’identification de nouveaux candidats pour l’élaboration d’un milieu spécialisé pour l’encapsulation de cellules. / Islet transplantation is considered as promising therapy for brittle type 1 diabetes. However, the use of immunosuppressive regimen and the lack of donor prevent the expansion of the therapy to other diabetic patients. In order to address these two issues, the strategy developed for the two last decades is the bioartificial pancreas. It consists in the immune-isolation of the graft in an artificial envelop, protecting at the same time the graft, from the immune-system, and the host, from the graft. In principle, the transplanted islets or surrogate insulin secreting cells are not in contact with the immune system and no immunosuppressive drugs are needed. The objective of this work was to identify the markers of islet death/survival mimicking MAILPAN® conditions, a bioartificial pancreas developed by Defymed and study different molecules which can improve islet survival.We demonstrated that bioartificial environment induced confinement and hypoxia which triggers cellular distress causing early islet loss. We identified several targets to improve viability and function such as oxygen carriers or anti-inflammatory drugs. The highest the number of islets in the MAILPAN® was, the most deleterious effects in islet survival and functionality were observed. As a consequence, we tested different molecules implicated in hypoxia and inflammation pathway to improve islet survival and restore islet functionality in a hypoxic and confined environment (600IEQ/cm²). The addition of HEMOXCell®, a novel oxygen carrier, and tat-CREB peptide have been shown to restore islets functionality and decrease hypoxia and inflammation levels after 24 hours in culture. Thus, these data provide new inputs for the design of a culture medium dedicated for cell encapsulation.

Page generated in 0.0472 seconds