• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 1
  • 1
  • Tagged with
  • 20
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The characterisation and purification of microbial flavin dependent monooxygenases (Baeyer-Villigerases) EC 1.14.13.x

Taylor, Ian Nicholas January 1995 (has links)
No description available.
2

The control of optical purity and stereoselectivity of alcohols in bacterial biotransformations

Walker, Claire Elyse January 1997 (has links)
No description available.
3

Asymmetric transformations catalysed by lipase enzymes

Admans, Gary David January 1994 (has links)
No description available.
4

Biocatalysis in organic synthesis using microorganisms and immobilised enzymes

Lemoult, Stephanie Claudette January 1994 (has links)
No description available.
5

Engineering Aminotransferases for the Biocatalytic Production of Aromatic D-Amino Acids

Walton, Curtis James William 27 July 2018 (has links)
Optically pure aromatic D-amino acids, such as D-phenylalanine (D-Phe) and its derivatives, are high-value building blocks for the pharmaceutical industry. These compounds can be prepared using biocatalytic methods relying on various enzymes, including aminotransferases (ATs). ATs, also called transaminases (EC 2.6.1.X), are a subclass of pyridoxal 5′-phosphate-dependent enzymes that catalyze the transfer of the amino group from a donor substrate to a ketone acceptor. Synthesis of optically-pure amino acids using whole-cell biocatalytic cascades based on ATs possess several advantages compared to traditional chemical methods, including excellent enantioselectivity and increased process and step efficiency, which is achieved through the catalysis of multiple steps in one-pot reactions without requirement for intermediate work-ups, cofactor recycling, or toxic metals. However, enzyme biocatalysts typically need to be engineered to alter their substrate specificity or to increase their catalytic efficiency, which has limited their industrial application. Therefore, to facilitate the engineering process of ATs broadly and to produce aromatic D-amino acids, we developed a high-throughput assay for the testing of a broad range of ATs against libraries of potential substrates, and developed a biocatalytic cascade to produce optically pure aromatic D-amino acids.
6

Redução de derivados de acetofenonas com fungos de origem marinha / Reduction of derived from acetophenone with fungi of marine origin

Rocha, Lenilson Coutinho da 08 August 2008 (has links)
Neste trabalho realizou-se o primeiro estudo biocatalítico envolvendo reações de redução de cetonas com fungos de origem marinha. Foram utilizadas 7 cetonas comerciais como substratos e 8 fungos derivados marinhos como biocatalisadores. Os fungos foram isolados das esponjas marinhas Geodia corticostylifera (Trichoderma sp Gc1, Penicillium miczynskii Gc5, Aspergillus sydowii Gc12) e Chelonaplysylla erecta (Bionectria sp Ce5, Aspergillus sydowii Ce15, Penicillium raistrickii Ce16 e Aspergillus sydowii Ce19). A redução α-cloroacetofenona (1) foi estudada sob várias condições de reação (mudanças de pH, adição ou ausência de glicose) e o melhor resultado foi com fungo P. miczynskii Gc5, pois se obteve um rendimento isolado de 60 % e excesso enantiomérico de 50 % para a (S)-2-cloro-1-feniletanol (1a). O interessante nestes estudos foi que todos os fungos utilizados na triagem com a α-cloroacetofenona (1) apresentaram seletividade anti-Prelog. Na literatura é comum obter redução enzimática com seletividade Prelog. A α-bromoacetofenona (2) foi biotransformada pelo fungo A. sydowii Ce19 nos correspondentes compostos: (S)-2-bromo-1-feniletanol (2a), (S)-2-cloro-1-feniletanol (1a), enquanto que a α-hidroxiacetofenona (2c), α-clorocetofenona (1) e o epóxido-estireno (2b) foram obtidos por reações não enzimáticas. A p-bromo-α-bromoacetofenona (3) e a p-nitro-α-bromoacetofenona (4) foram totalmente biodegradadas pelo fungo A. sydowii Ce19. A redução biocatalítica da orto-iodoacetofenona (5) e meta-iodoacetofenona (6) com o fungo Trichoderma sp Gc1 forneceu o orto-iodo-1-feniletanol (5a) e o meta-iodo-1-feniletanol (6a) com excelentes excessos enantioméricos (e.e. > 99 %). Ficou comprovado também neste trabalho que os fungos derivados marinhos para promover as reações de redução por biocatálise precisam ser cultivados em água do mar artificial. Enquanto a p-iodoacetofenona (7) produziu o p-iodo-1-feniletanol (7a) com e.e. 48 %. / This work carried out the first biocatalytic study involving reactions of reduction of ketones with marine-derived fungi. In this study were utilized 7 commercial ketones as substrates and 8 marine-derived fungi as biocatalysts. The fungi were isolated from the marine sponges Geodia corticostylifera (Trichoderma sp Gc1, Penicillium miczynskii Gc5, Aspergillus sydowii Gc12) and Chelonaplysylla erecta (Bionectria sp Ce5, Aspergillus sydowii Ce15, Penicillium raistrickii Ce16 and Aspergillus sydowii Ce19). The reduction of 2-chloro-1-phenylethanone was studied under several conditions of reaction (changes of pH, addition or absence of glucose) and the best result was with fungus P. miczynskii Gc5, therefore it was isolated in modest yield of 60% and enantiomeric excess of 50% for the (S)-(+)-2-chloro-1-phenylethanol. The interesting in these studies was that all the fungi utilized in the screening with the 2-chloro-1- phenylethanone presented selectivity anti-Prelog. In the literature is common to obtain enzymatic reduction with Prelog selectivity. The 2-bromo-1-phenylethanone was biotransformated by the fungus A. sydowii Ce19 in the (S)-2-bromo-1-phenylethanol, (S)-2-cloro-1-phenylethanol, whereas the α-hydroxy-acetophenone, 2-chloro-1- phenylethanone and the 2-phenyloxirane were obtained by no enzymatic reactions. The 2-bromo-1-(4-bromophenyl)ethanone and the 2-bromo-1-(4-nitrophenyl)ethanone were biodegraded by the fungus A. sydowii Ce19. The biocatalytic reduction of 1-(2- iodophenyl)ethanol and 1-(3-iodophenyl)ethanol with the fungus Trichoderma sp Gc1 afforded the 1-(2-iodophenyl)ethanol and the 1-(3-iodophenyl)ethanol in excellent enantiomeric excesses (e.e. >99 %). It was verified that the marine-derived fungi must grow in artificial sea water to catalyze the reduction reactions.
7

Resolução enzimática de álcoois racêmicos com lipase de Candida antarctica e redução de cetonas com fungos de origem marinha / Resolution enzymatic of alcohols secondary with lipase of Candida antartica and reduction of ketones with fungi of marine origin

Ferreira, Hercules Vicente 22 August 2008 (has links)
Neste trabalho realizaram-se reações de resolução enzimática de alcoóis secundários utilizando a enzima imobilizada lipase de Candida antarctica (NOVOZYME 435). Os alcoóis utilizados foram: (RS)-1-(4-metoxifenil)etanol (1a); (RS)-4-metil-2-pentanol (3a); (RS)-2-metil-3-hexanol (4a); (RS)-5-metil-2-hexanol (5a); (RS)-2-octanol (6a); (RS)-3-heptanol (7a); (RS)-6-metil-5-hepten-2-ol (8a); (RS)-1-octen-3-ol (9a). Todos os alcoóis foram resolvidos pela lipase, com exceção do álcool 4a. Nas resoluções enzimáticas os excessos enantioméricos dos álcoois e acetatos foram superiores a 98 %, havendo a conversão total (50 %) dos enantiômeros S nos respectivos acetatos: (S)-1-acetato-4-metoxifenil (1b); (S)-2-acetato-4-metil-pentano (3b); (S)-2-acetato-5-metil-hexano (5b); (S)-2-acetato-octano (6b); (S)-3-acetato-heptano (7b); (S)-2-acetato-6-metil-5-hepteno (8b); (S)-3-acetato-1-octeno (9b). Realizou-se ainda um estudo biocatalítico envolvendo reações de redução de cetonas com fungos de origem marinha. Foram utilizadas na reduções as cetonas: 4-metoxiacetofenona (1), 1-fenil-etanona (2), 4-metil-2-pentanona (3), 2-octanona (6) e a 6-metil-5-hetpen-2-ona (8) e como biocatalisadores três fungos de origem marinha (Bionectria sp Ce5, Aspergillus sydowii Ce15 e Aspergillus sydowii Ce19). A 4-metoxiacetofenona (1) foi reduzida pelos fungos Bionectria sp Ce5, Aspergillus sydowii Ce15 e Aspergillus sydowii Ce19 com excesso enantiomérico de 98% e rendimento de 65 %. A 2-octanona (6) e a 6-metil-5-hepten-2-ona (8) foram reduzidas pelo fungo A. sydowii Ce15 nos respectivos (S)-álcoois 6a e 8a com pureza enantiomérica > 98 %. Já a 1-fenil-etanona (2) foi reduzida somente pelo fungo Bionectria sp Ce5 com excesso enantiomérico de 50 % e rendimento de 25 %. A 4-metil-2-pentanona (3) não foi reduzida por nenhum dos microrganismos estudados. / This work carried out the enzymatic reactions of alcohols by using a lipase from immobilized Candida Antarctica (NOVOZYME 435). The alcohols used were: (RS)-1- (4-methoxyphenyl) ethanol (1a), (RS)-4-methyl-2-pentanol (3a), (RS)-2-methyl-3- hexanol (4a), (RS)-5-methyl-2-hexanol (5a), (RS)-2-octanol (6a), (RS)-3-heptanol (7a), (RS)-6-methyl-5-hepten-2-ol (8a) and (RS)-1-octen-3-ol (9a). All the alcohols were catalyzed by lipase, except for the alcohol 4a. In this enzymatic resolutions the enantiomeric excesses of alcohols and acetates were more than 98% and total conversions (50%) for enantiomers of the acetates: (R)-1-acetate-4-methoxyphenyl (1b), (R)-2-acetate-4-methyl-pentane (3b), (R)-2-acetate-5-methyl-hexane (5b), (R)-2-acetateoctane (6b), (R)-3-acetate-heptane (7b), (R)-2-acetate-6-methyl-5-hepteno (8b) and (S)- 3-acetate-1-octene (9b). In addition it was studied the biocatalytic reduction of ketones with marine-derived fungi. The ketones used were the 4-metoxyacetophenone (1), 1- phenyl-etanone (2), 4-methyl-2-pentanone (3), 2-octanone (6) and 6-methyl-5-hetpen-2- one (8). The marine-derived fungi used as biocatalysts were Bionectria sp Ce5, Aspergillus sydowii Ce15 and Aspergillus sydowii Ce19. The 4-metoxyacetophenone (1) was reduced by Bionectria sp Ce5 by Aspergillus sydowii Ce15 and Aspergillus sydowii Ce19 in high enantiomeric excess (98% e.e.) and good yield, i.g., 65%. The 2- octanone (6) and 6-methyl-5-hepten-2-one (8) were reduced by A. sydowii Ce15 in the (R)-alcohols 6a and 8a in high enantiomeric purities, > 98% e.e. However the 1-phenyletanone (2) was reduced only by the fungus Bionectria sp Ce5 with enantiomeric excess of 50% and yield of 25%. The 4-methyl-2-pentanone (3) was not reduced by the microorganisms studied.
8

Resolução enzimática de álcoois racêmicos com lipase de Candida antarctica e redução de cetonas com fungos de origem marinha / Resolution enzymatic of alcohols secondary with lipase of Candida antartica and reduction of ketones with fungi of marine origin

Hercules Vicente Ferreira 22 August 2008 (has links)
Neste trabalho realizaram-se reações de resolução enzimática de alcoóis secundários utilizando a enzima imobilizada lipase de Candida antarctica (NOVOZYME 435). Os alcoóis utilizados foram: (RS)-1-(4-metoxifenil)etanol (1a); (RS)-4-metil-2-pentanol (3a); (RS)-2-metil-3-hexanol (4a); (RS)-5-metil-2-hexanol (5a); (RS)-2-octanol (6a); (RS)-3-heptanol (7a); (RS)-6-metil-5-hepten-2-ol (8a); (RS)-1-octen-3-ol (9a). Todos os alcoóis foram resolvidos pela lipase, com exceção do álcool 4a. Nas resoluções enzimáticas os excessos enantioméricos dos álcoois e acetatos foram superiores a 98 %, havendo a conversão total (50 %) dos enantiômeros S nos respectivos acetatos: (S)-1-acetato-4-metoxifenil (1b); (S)-2-acetato-4-metil-pentano (3b); (S)-2-acetato-5-metil-hexano (5b); (S)-2-acetato-octano (6b); (S)-3-acetato-heptano (7b); (S)-2-acetato-6-metil-5-hepteno (8b); (S)-3-acetato-1-octeno (9b). Realizou-se ainda um estudo biocatalítico envolvendo reações de redução de cetonas com fungos de origem marinha. Foram utilizadas na reduções as cetonas: 4-metoxiacetofenona (1), 1-fenil-etanona (2), 4-metil-2-pentanona (3), 2-octanona (6) e a 6-metil-5-hetpen-2-ona (8) e como biocatalisadores três fungos de origem marinha (Bionectria sp Ce5, Aspergillus sydowii Ce15 e Aspergillus sydowii Ce19). A 4-metoxiacetofenona (1) foi reduzida pelos fungos Bionectria sp Ce5, Aspergillus sydowii Ce15 e Aspergillus sydowii Ce19 com excesso enantiomérico de 98% e rendimento de 65 %. A 2-octanona (6) e a 6-metil-5-hepten-2-ona (8) foram reduzidas pelo fungo A. sydowii Ce15 nos respectivos (S)-álcoois 6a e 8a com pureza enantiomérica > 98 %. Já a 1-fenil-etanona (2) foi reduzida somente pelo fungo Bionectria sp Ce5 com excesso enantiomérico de 50 % e rendimento de 25 %. A 4-metil-2-pentanona (3) não foi reduzida por nenhum dos microrganismos estudados. / This work carried out the enzymatic reactions of alcohols by using a lipase from immobilized Candida Antarctica (NOVOZYME 435). The alcohols used were: (RS)-1- (4-methoxyphenyl) ethanol (1a), (RS)-4-methyl-2-pentanol (3a), (RS)-2-methyl-3- hexanol (4a), (RS)-5-methyl-2-hexanol (5a), (RS)-2-octanol (6a), (RS)-3-heptanol (7a), (RS)-6-methyl-5-hepten-2-ol (8a) and (RS)-1-octen-3-ol (9a). All the alcohols were catalyzed by lipase, except for the alcohol 4a. In this enzymatic resolutions the enantiomeric excesses of alcohols and acetates were more than 98% and total conversions (50%) for enantiomers of the acetates: (R)-1-acetate-4-methoxyphenyl (1b), (R)-2-acetate-4-methyl-pentane (3b), (R)-2-acetate-5-methyl-hexane (5b), (R)-2-acetateoctane (6b), (R)-3-acetate-heptane (7b), (R)-2-acetate-6-methyl-5-hepteno (8b) and (S)- 3-acetate-1-octene (9b). In addition it was studied the biocatalytic reduction of ketones with marine-derived fungi. The ketones used were the 4-metoxyacetophenone (1), 1- phenyl-etanone (2), 4-methyl-2-pentanone (3), 2-octanone (6) and 6-methyl-5-hetpen-2- one (8). The marine-derived fungi used as biocatalysts were Bionectria sp Ce5, Aspergillus sydowii Ce15 and Aspergillus sydowii Ce19. The 4-metoxyacetophenone (1) was reduced by Bionectria sp Ce5 by Aspergillus sydowii Ce15 and Aspergillus sydowii Ce19 in high enantiomeric excess (98% e.e.) and good yield, i.g., 65%. The 2- octanone (6) and 6-methyl-5-hepten-2-one (8) were reduced by A. sydowii Ce15 in the (R)-alcohols 6a and 8a in high enantiomeric purities, > 98% e.e. However the 1-phenyletanone (2) was reduced only by the fungus Bionectria sp Ce5 with enantiomeric excess of 50% and yield of 25%. The 4-methyl-2-pentanone (3) was not reduced by the microorganisms studied.
9

Redução de derivados de acetofenonas com fungos de origem marinha / Reduction of derived from acetophenone with fungi of marine origin

Lenilson Coutinho da Rocha 08 August 2008 (has links)
Neste trabalho realizou-se o primeiro estudo biocatalítico envolvendo reações de redução de cetonas com fungos de origem marinha. Foram utilizadas 7 cetonas comerciais como substratos e 8 fungos derivados marinhos como biocatalisadores. Os fungos foram isolados das esponjas marinhas Geodia corticostylifera (Trichoderma sp Gc1, Penicillium miczynskii Gc5, Aspergillus sydowii Gc12) e Chelonaplysylla erecta (Bionectria sp Ce5, Aspergillus sydowii Ce15, Penicillium raistrickii Ce16 e Aspergillus sydowii Ce19). A redução α-cloroacetofenona (1) foi estudada sob várias condições de reação (mudanças de pH, adição ou ausência de glicose) e o melhor resultado foi com fungo P. miczynskii Gc5, pois se obteve um rendimento isolado de 60 % e excesso enantiomérico de 50 % para a (S)-2-cloro-1-feniletanol (1a). O interessante nestes estudos foi que todos os fungos utilizados na triagem com a α-cloroacetofenona (1) apresentaram seletividade anti-Prelog. Na literatura é comum obter redução enzimática com seletividade Prelog. A α-bromoacetofenona (2) foi biotransformada pelo fungo A. sydowii Ce19 nos correspondentes compostos: (S)-2-bromo-1-feniletanol (2a), (S)-2-cloro-1-feniletanol (1a), enquanto que a α-hidroxiacetofenona (2c), α-clorocetofenona (1) e o epóxido-estireno (2b) foram obtidos por reações não enzimáticas. A p-bromo-α-bromoacetofenona (3) e a p-nitro-α-bromoacetofenona (4) foram totalmente biodegradadas pelo fungo A. sydowii Ce19. A redução biocatalítica da orto-iodoacetofenona (5) e meta-iodoacetofenona (6) com o fungo Trichoderma sp Gc1 forneceu o orto-iodo-1-feniletanol (5a) e o meta-iodo-1-feniletanol (6a) com excelentes excessos enantioméricos (e.e. > 99 %). Ficou comprovado também neste trabalho que os fungos derivados marinhos para promover as reações de redução por biocatálise precisam ser cultivados em água do mar artificial. Enquanto a p-iodoacetofenona (7) produziu o p-iodo-1-feniletanol (7a) com e.e. 48 %. / This work carried out the first biocatalytic study involving reactions of reduction of ketones with marine-derived fungi. In this study were utilized 7 commercial ketones as substrates and 8 marine-derived fungi as biocatalysts. The fungi were isolated from the marine sponges Geodia corticostylifera (Trichoderma sp Gc1, Penicillium miczynskii Gc5, Aspergillus sydowii Gc12) and Chelonaplysylla erecta (Bionectria sp Ce5, Aspergillus sydowii Ce15, Penicillium raistrickii Ce16 and Aspergillus sydowii Ce19). The reduction of 2-chloro-1-phenylethanone was studied under several conditions of reaction (changes of pH, addition or absence of glucose) and the best result was with fungus P. miczynskii Gc5, therefore it was isolated in modest yield of 60% and enantiomeric excess of 50% for the (S)-(+)-2-chloro-1-phenylethanol. The interesting in these studies was that all the fungi utilized in the screening with the 2-chloro-1- phenylethanone presented selectivity anti-Prelog. In the literature is common to obtain enzymatic reduction with Prelog selectivity. The 2-bromo-1-phenylethanone was biotransformated by the fungus A. sydowii Ce19 in the (S)-2-bromo-1-phenylethanol, (S)-2-cloro-1-phenylethanol, whereas the α-hydroxy-acetophenone, 2-chloro-1- phenylethanone and the 2-phenyloxirane were obtained by no enzymatic reactions. The 2-bromo-1-(4-bromophenyl)ethanone and the 2-bromo-1-(4-nitrophenyl)ethanone were biodegraded by the fungus A. sydowii Ce19. The biocatalytic reduction of 1-(2- iodophenyl)ethanol and 1-(3-iodophenyl)ethanol with the fungus Trichoderma sp Gc1 afforded the 1-(2-iodophenyl)ethanol and the 1-(3-iodophenyl)ethanol in excellent enantiomeric excesses (e.e. >99 %). It was verified that the marine-derived fungi must grow in artificial sea water to catalyze the reduction reactions.
10

Ζυμώσεις σε οικιακό ψυγείο με τη χρήση θερμικά ξηραμένων κυττάρων σακχαρομύκητα ακινητοποιημένων σε ζελατινοποιημένο άμυλο και απολιγνοποιημένα κυτταρινούχα υλικά

Γραμμένου, Αλεξάνδρα 16 June 2011 (has links)
Τα τελευταία 30 χρόνια η βιοτεχνολογία χρησιμοποιεί υλικά που προέρχονται από ανανεώσιμες και φυσικές πηγές και έχει εφαρμογή στη χημεία τροφίμων. Πολλά πειράματα διεξάγονται με στόχο τη βελτίωση των τεχνικών κυτταρικής ακινητοποίησης. Ο νέος τομέας λέγεται "λευκή βιοτεχνολογία". Εκτός από τη γενικότερη εφαρμογή στη χημεία πιο συγκεκριμένα περιλαμβάνει επίσης καινούριες μεθόδους προκειμένου να αυξηθεί ο ρυθμός αλκοολικής ζύμωσης. Χρησιμοποιούνται κύτταρα, ένζυμα και οργανίδια για την κατάλυση μιας χημικής αντίδρασης με αποτέλεσμα να επιταχύνεται. Στην παρούσα εργασία έγινε μελέτη ζυμώσεων σε χαμηλές θερμοκρασίες ( στους 5°C, 15°C και 25°C. Η πειραματική διαδικασία ήταν μια καινοτόμος και τροποποιημένη μέθοδος σύμφωνα με τη οποία χρησιμοποιήθηκε ένας βιοκαταλύτης. Παρασκευάστηκε από θερμικά ξηραμένα και ακινητοποιημένα κύτταρα Saccharomyces secerevisiae ενός αλκοολανθεκτικού και κρυοανθεκτικού στελέχους ( ΑΧΑΖ-1 ) και απο δυο διαφορετικά υποστρώματα. Η πηγή των φυσικών υλικών ήταν το ξύλο (πριονίδι) και το άμυλο κριθαριού σε σκόνη. Μετά από απολιγνοποίηση το κατεργασμένο πριονίδι (18g) προστέθηκε σε προπαρασκευασμένο υπέρκορο διάλυμα αμύλου και αναμίχθηκε μαζί με ποσότητα μικροοργανισμού (10g) και θρεπτικού υλικού (10mL) στους 40°C. Ύστερα αποθηκεύτηκε στους 15°C. Και οι δυο φορείς είναι πολυμερή γλυκόζης. Τα κύτταρα εγκλωβίστηκαν στο gel πολυμερούς και επίσης ακινητοποιήθηκαν με προσρόφηση στο απολιγνοποιημένο κυτταρινούχο υλικό. Το θρεπτικό υλικό είχε 12% αρχική συγκέντρωση σακχάρων ( γλυκόζης/φρουκτόζης) με αποτέλεσμα η πυκνότητα να είναι 12 °Be. Οι ζυμώσεις πραγματοποιήθηκαν σε οικιακό ψυγείο εκτός από εκείνη που έγινε σε θερμοκρασία δωματίου. Η βιομάζα ακινητοποιημένων κυττάρων εκτιμήθηκε έμμεσα με τη μέθοδο Kjeldahl. Η παρατήρηση της μορφολογίας των κυττάρων έγινε με ηλεκτρονικό μικροσκόπιο σάρωσης καθώς οδηγεί σε συμπεράσματα για τη βιωσιμότητα. Η κινητική των ζυμώσεων υπο τη επίδραση της θερμοκρασίας υπολογίστηκε μετα από καταγραφή των μετρήσεων που έγιναν με πυκνόμετρο σε τακτά χρονικά διαστήματα. Η παραγωγικότητα αιθανόλης και η συγκέντρωση μεθανόλης που περιέχονταν στα δείγματα προσδιορίστηκαν με αέρια χρωματογραφία (με ανιχνευτή φλόγας , FID). Τέλος, τα πτητικά παραπροιότα συμπεριλαμβάνομένων των ακεταλδεύδη, οξικού αιθυλεστέρα, 1-προπανόλη, ισοβουτανόλη και αμυλικών αλκοόλών προσδιορίστηκαν με την ίδια αναλυτική μέθοδο, όπως αναφέρεται νωρίτερα. / -

Page generated in 0.099 seconds