Spelling suggestions: "subject:"biochemistry anda 7molecular dynamics"" "subject:"biochemistry anda bimolecular dynamics""
1 |
Computational methods for the study of immunoglobulin aggregationShorthouse, David Robert January 2015 (has links)
Protein aggregation is a major challenge in the development of antibody-based therapeutics. Therapeutic antibodies are produced and stored in high concentrations and under fluctuating conditions unfavourable for their stability. Aggregation of these proteins in solution leads to serious consequences for patients, with the initiation of immune reactions, which have the potential to be fatal, and in the loss of clinical potency. The types of aggregates formed by antibodies, and the processes that lead to their propagation are poorly understood. By studying these molecules via computational approaches, we are able to simulate and probe their tendency to aggregate on experimentally comparable timescales. By performing small numbers of coarse grained simulations of immunoglobulin frag- ments it is shown that specific regions of proteins are involved in self-self interactions, and these regions are targets for reducing the self-association of experimental molecules. Techniques developed here are integrated within a high throughput approach that is able to generate information on aggregation for a large number of candidate antibody structures. The methodology was refined via development of a novel technique for coarse grained simulations of oligosaccharides. This method was initially tested on glycolipids, and then extended to glycoproteins. The primary outcome is a coarse grained model for a glyco- sylated antibody Fc fragment. The glycosylated Fc was then simulated, and compared to experimental data. Coarse grained simulations support the hypothesis that the protein be- comes more flexible in the absence of glycosylation.
|
2 |
Le COP9 signalosome : activité et régulation / The COP9 signalosome : Activity and regulationBirol, Melissa 19 December 2014 (has links)
Le COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) est un complexe multiprotéique contenant huit sous-unités (320 kDa), impliqué dans des processus cellulaires divers allant de la progression du cycle cellulaire, à l'expression des gènes et la réparation de l'ADN, à travers sa fonction au sein du système ubiquitine-protéasome. Il s'agit d'un complexe fortement conservé au cours de l'évolution chez les eucaryotes supérieurs chez qui son activité catalytique est essentielle. Au cours des années d'études biologiques et biochimiques qui ont permis d'élucider le rôle du CSN, sa fonction la mieux étudiée et la mieux comprise est celle liée au contrôle de l'ubiquitylation des protéines (une modification post-traductionnelle qui implique la liaison covalente d'une protéine cible par une molécule d'ubiquitine) par une classe d'E3 ubiquitine ligases. L'activité catalytique du CSN régule spécifiquement les E3 cullin RING ubiquitin ligases (CRLs) via la suppression d'une molécule ressemblant à l'ubiquitine, Nedd8 (cullin-neural precursor cell expressed developmentally downregulated gene 8) des CRLs au cours d'une réaction de déneddylation. Les cycles de neddylation/déneddylation sont essentiels au fonctionnement correct des CRLs et le CSN joue un rôle central dans ce processus à travers sa fonction de déneddylase. Une similarité globale lie le CSN, le chapeau du protéasome (19S) et le complexe elF3 (eukaryotic initiation factor-3). Ces assemblages multi-protéiques comprennent tous six sous-unités contenant un domaine PCI (proteasome COP9 eIF3) et deux sous-unités contenant un domaine MPN (Mpr1–Pad1–N-terminal). L'activité catalytique du CSN est portée par la sous-unité 5, CSN5 qui hydrolyse la liaison isopeptidique entre Nedd8 et la CRL. CSN5 contient un cœur catalytique dépendent d'un zinc et comprenant un motif JAMM (Jab1/MPN/Mov34).L'incorporation de CSN5 dans le CSN révèle son activité isopeptidasique, alors qu'à l'état isolé, CSN5 n'est pas actif. Le travail réalisé au cours de ces trois ans a abouti à cinq aspects principaux qui ont contribué à une meilleure compréhension globale du système CSN. (i) S'appuyant sur la structure du domaine catalytique de CSN5, des études in vitro et in silico ont abouti à l'identification d'un élément moléculaire permettant à CSN5 de passer de la forme inactive à la forme active. Ceci a débouché sur la conception et validation d'un variant constitutivement actif de CSN5. (ii) La capacité de CSN5 à homodimériser a été étudié en solution, in silico et dans des extraits cellulaires et a apporté des perspectives potentiellement intéressantes concernant la fonction de CSN5. (iii) Au-delà de ce travail et pour aborder la question de la régulation de l'activité de CSN5 dans le CSN, la contribution de la sous-unité 6, CSN6 qui interagit directement avec CSN5 a été évaluée et ceci a abouti à l'identification de CSN6 comme sous-unité activatrice de CSN5. (iv) La caractérisation biochimique et biophysique du complexe CSN5-CSN6 a été utilisée pour explorer les bases moléculaires de cette association, non seulement, dans le contexte de son interaction avec Nedd8, mais aussi, de son intégration au sein du CSN, à travers une approche intégrée alliant des techniques biochimiques, structurales, biophysiques et computationnelles. (v) La dernière partie de ce travail est focalisée sur l'activité de maturation du précurseur de Nedd8 par le complexe CSN5-CSN6 mise en évidence in vitro et une exploration préliminaire de cette activité décrite pour la première fois est présentée. En résumé, ce travail a permis d'améliorer la compréhension des déterminants de l'activité et des mécanismes de régulation auxquels la sous-unité catalytique du CSN, CSN5 est soumise. / The COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) is an eight-subunit-containing multiprotein complex (320 kDa) implicated in diverse cellular processes including cell cycle progression, gene expression and DNA repair via its function in the ubiquitin-proteasome pathway. It is a highly evolutionary conserved protein complex in higher eukaryotes for which its activity is essential. Over years of biochemical and biological studies to elucidate the role of the CSN, its most studied and best understood function is linked to the control of protein ubiquitylation (post-translational modification corresponding to the covalent conjugation of an ubiquitin molecule) by a class of E3 ubiquitin ligases. The CSN exhibits catalytic activity to regulate E3-cullin RING ubiquitin ligases (CRLs) by the removal of an ubiquitin-like protein, Nedd8 (cullin-neural precursor cell expressed developmentally downregulated gene 8), from CRLs. Cycles of neddylation/deneddylation are essential for CRL function and the CSN is central in this process through its activity as a CRL deneddylase.Structural and functional similarities link the CSN, the 19S lid of the 26S proteasome and the eukaryotic initiation factor-3 (elF3). These multi-subunit assemblies comprise six PCI (proteasome COP9 eIF3) domain subunits and two MPN (Mpr1–Pad1–N-terminal) domain-containing subunits. The catalytic activity of the CSN is centred on its subunit 5 (CSN5/Jab1), which hydrolyses the Nedd8-CRL isopeptide bond. CSN5 contains a zinc-dependent isopeptidase catalytic centre constituted of a JAMM (Jab1/MPN/Mov34) motif. CSN5 incorporation within the CSN complex unleashes its isopeptidase activity, whereas it remains inactive in isolation. The work presented in this manuscript led to five main findings. (i) Having elucidated the crystal structure of CSN5 catalytic domain, biochemical and in silico investigations that furthered the understanding of CSN5 molecular regulation, led to the identification of a potential molecular trigger enabling CSN5 to be active and the design of a constitutively active CSN5 variant form. (ii) The ability of CSN5 to homodimerise was investigated in solution, in silico and in cellular extracts and brought information that could be important for its function. (iii) Further to that work, to address CSN5 activity within the CSN, the contribution of another CSN subunit, mainly CSN6, shown to interact directly with CSN5 was evaluated and this led to the identification of CSN6 as the CSN5 activating subunit. (iv) The biochemical and biophysical characterisation of the CSN5-CSN6 complex was exploited to explore at the molecular level this complex in the context of its binding to Nedd8 and of its integration within the holo-CSN assembly through an integrated approach that includes biochemical, structural, biophysical and computational techniques. (v) Finally the CSN5-CSN6 complex was shown to be able in vitro to pursue peptidase activity on the Nedd8 precursor protein, pro-Nedd8 by cleaving its C-terminal extension (-G75G76GGLRQ) and preliminary results relating to the exploration of this new activity are presented.Overall this work allowed to gain an in-depth understanding of the activity determinants and of the regulatory mechanisms that the CSN catalytic subunit CSN5 is subjected to.
|
3 |
Pushing the boundaries : molecular dynamics simulations of complex biological membranesParton, Daniel L. January 2011 (has links)
A range of simulations have been conducted to investigate the behaviour of a diverse set of complex biological membrane systems. The processes of interest have required simulations over extended time and length scales, but without sacrifice of molecular detail. For this reason, the primary technique used has been coarse-grained molecular dynamics (CG MD) simulations, in which small groups of atoms are combined into lower-resolution CG particles. The increased computational efficiency of this technique has allowed simulations with time scales of microseconds, and length scales of hundreds of nm. The membrane-permeabilizing action of the antimicrobial peptide maculatin 1.1 was investigated. This short α-helical peptide is thought to kill bacteria by permeabilizing the plasma membrane, but the exact mechanism has not been confirmed. Multiscale (CG and atomistic) simulations show that maculatin can insert into membranes to form disordered, water-permeable aggregates, while CG simulations of large numbers of peptides resulted in substantial deformation of lipid vesicles. The simulations imply that both pore-forming and lytic mechanisms are available to maculatin 1.1, and that the predominance of either depends on conditions such as peptide concentration and membrane composition. A generalized study of membrane protein aggregation was conducted via CG simulations of lipid bilayers containing multiple copies of model transmembrane proteins: either α-helical bundles or β-barrels. By varying the lipid tail length and the membrane type (planar bilayer or spherical vesicle), the simulations display protein aggregation ranging from negligible to extensive; they show how this biologically important process is modulated by hydrophobic mismatch, membrane curvature, and the structural class or orientation of the protein. The association of influenza hemagglutinin (HA) with putative lipid rafts was investigated by simulating aggregates of HA in a domain-forming membrane. The CG MD study addressed an important limitation of model membrane experiments by investigating the influence of high local protein concentration on membrane phase behaviour. The simulations showed attenuated diffusion of unsaturated lipids within HA aggregates, leading to spontaneous accumulation of raft-type lipids (saturated lipids and cholesterol). A CG model of the entire influenza viral envelope was constructed in realistic dimensions, comprising the three types of viral envelope protein (HA, neuraminidase and M2) inserted into a large lipid vesicle. The study represents one of the largest near-atomistic simulations of a biological membrane to date. It shows how the high concentration of proteins found in the viral envelope can attenuate formation of lipid domains, which may help to explain why lipid rafts do not form on large scales in vivo.
|
Page generated in 0.1949 seconds