Spelling suggestions: "subject:"biodiesel fuel -- south africa"" "subject:"biodiesel fuel -- south affrica""
1 |
Development and validation of in-process control test kits for biodiesel productionFibi, Pumza Oscarine January 2013 (has links)
The production of biodiesel from vegetable oils is not a new technology; it has been around since the 1950’s and both the research in terms of the different feedstock that can be used and the production of biodiesel has since been gaining momentum as there needs to be a new, sustainable and domestic alternative to petroleum fuels. These petroleum fuels pose enormous threats to the environment and therefore need to be replaced as they are mostly contributing to climate change and global warming not to mention the frequent price hikes which are crippling the South African economy. Biodiesel production using vegetable oils seems to be and is the future and a law has recently been passed which sanctions the production of biofuel locally.[1] South African fuel producers will instigate obligatory blending of fossil fuel with biofuel as the country moves to encourage investment in its biofuels sector. The production of biodiesel locally and the blending of biodiesel with other petroleum products will reduce the country’s dependence on imported fuel. The already established petrochemical companies like BP, Sasol and Engine are therefore mandated to purchase these biofuels if and when the biofuels meet the required South African National Standard (SANS) 1935 requirements. This is then where the challenge comes as most of these growing biofuel companies cannot afford to purchase testing equipment.The growing companiesthen discover upon completion of the biofuel manufacturing process that their product does not meet the required standard specification. The failure translates to a financial loss as the final product can possibly not be reworked. The aim of the project is then to assist these companies who are manufacturing biofuel, by providing them with in-house biofuel process methods which will allow for early detection, should there be a need to redo a step in the process and not wait until the completion of the production process. These in-house process-testing methods will range from pH determination, titration tests which will determine the soap content and the percentage free fatty acid content, water determination, density and visual testing. It is not cost-effective for these biodiesel manufacturers to send their samples for outsource testing as evidently the results obtained would be out of specification hence the need to provide these biodiesel manufacturers with in-house analytical testing techniques that will aid in monitoring of the biodiesel production.
|
2 |
An investigation into the current state and future of bioethanol and biodiesel as renewable energy sources in South AfricaStemmet, Floris Nicholaas 12 1900 (has links)
Thesis (MBA)--Stellenbosch University, 2012. / Bioethanol and biodiesel are currently the main biofuels. The United States of America and Brazil
are the major bioethanol producers from maize and sugar cane respectively. European and Asian
countries produce and consume biodiesel as transportation fuel. Generally, governments want to
avoid importing biofuels, since this erodes the advantage of fuel security from growing fuel locally.
There are however opportunities for many African countries to export to Europe and the United
States of America, since they have preferential import tax exemption agreements with African
countries. Sub-Saharan Africa has large potential to produce biomass. Inherently, South Africa has
poor potential to produce biomass, due to the climatic conditions and water scarcity. However,
South Africa has infrastructure, skills, commercial farmers and, importantly, government policy on
biofuels. These advantages should be leveraged to optimise gains from a biofuel industry. A
biofuels industry holds potential in terms of job creation and rural development gains, apart from
the advantages of fuel security, greenhouse gas (GHG) emission reductions, stimulation of the
agricultural sector, and reduced fuel imports with the balance of payment advantages.
The South African government aims to develop rural communities in former homeland areas. If
degraded land in these areas is recovered and used for production of biofuels, the environmental
benefits are immediate and substantial. Fuel crop production in these areas does not compromise
food security nor does it result in further deforestation. Creating jobs in rural areas can contribute
to reduction of poverty. The Department of Minerals and Energy (DME) published its strategy in
2007. This excluded maize as permitted bioethanol feedstock, it sets a two per cent liquid fuels
penetration target, and gave fuel tax exemptions for biodiesel and bioethanol. The biofuels would
be distributed through voluntary low concentration blending into petroleum products by oil
companies. The industry would be regulated and producers require licensing through the South
African Revenue Service (SARS). The license conditions were mainly related to the type of
feedstock, where it was produced, volumes produced, local consumption, environmentally
friendliness, compliance with broad based black economic empowerment requirements and it
should not compete with food sources. The strategy is up for review after the initial five years
phase.
Currently there are no commercial bioethanol fuel production plants in South Africa and only some
small scale biodiesel production plants with very limited outlets to consumers. With all the apparent
advantages, why is nothing happening in the industry? Business is not showing interest, proving
that the economic conditions are not favourable. The government wants to control the production
side to maximise the gains from it, but instead of assisting the industry, it has practically inhibited it
from getting started. The consumers must also be prepared to accept the new fuels. Awareness,
education and a culture of sustainable use are vital to create the required market. This is an
exciting industry with potential benefits to South Africa and its society as a whole, but the
fundamental elements of business must be in place in order for it to become self-sustainable.
|
3 |
Biodiesel production from microalgae by enzymatic transesterificationGuldhe, Abhishek January 2015 (has links)
Submitted in fulfillment for the requirements for the degree of Doctor of Technology: Biotechnology, Durban University of Technology, Durban, South Africa, 2015. / Main focus of this study is to investigate the enzymatic-conversion of microalgal lipids to biodiesel. However, preceding steps before conversion such as drying of microalgal biomass and extraction of lipids were also studied. Downstream processing of microalgae has several challenges and there is very little literature available in this area. S. obliquus was grown in the pilot scale open pond cultivation system for biomass production. Different techniques were studied for biomass drying and extraction of lipids from harvested microalgal biomass. Effect of these drying and extraction techniques on lipid yield and quality was assessed. Energy consumption and economic evaluation was also studied.
Enzymatic conversion of microalgal lipids by extracellular and whole cell lipase application was investigated. For both applications, free and immobilized lipases from different sources were screened and selected based on biodiesel conversion. Process parameters were optimized using chosen extracellular and whole cell lipases; also step-wise methanol addition was studied to improve the biodiesel conversion. Immobilized lipase was studied for its reuse. Final biodiesel was characterized for its fuel properties and compared with the specifications given by international standards. Enzymatic conversion of microalgal lipids was compared with the conventional homogeneous acid-catalyzed conversion. Enzymatic conversion and chemical conversion were techno-economically investigated based on process cost, energy consumption and processing steps.
Freeze drying was the most efficient technique, however at large scale economical sun drying could also be selected as possible drying step. Microwave assisted lipid extraction performed better compared to sonication technique. Immobilized P. fluorescens lipase in extracellular application and A. niger lipase in whole cell application showed superior biodiesel conversion. The extracellular immobilized P. fluorescens lipase showed better biodiesel conversion and yields than the immobilized A. niger whole cell lipase. Both the enzyme catalysts showed lower biodiesel conversion compared to conventional chemical catalyst and higher processing cost. However, techno-economic analysis showed that, the reuse potential of immobilized lipases can significantly improve the economics. Fewer purification steps, less wastewater generation and minimal energy input are the benefits of enzymatic route of biodiesel conversion. Microalgae as a feedstock and lipase as a catalyst for conversion makes overall biodiesel production process environmentally-friendly. Data from this study has academic as well as industrial significance. Conclusions from this study form the basis for greener and sustainable scaling-up of microalgal biodiesel production process. / D
|
4 |
Development and optimization of technology for the extraction and conversion of micro algal lipids to biodieselRamluckan, Krishan January 2015 (has links)
Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry, Durban University of Technology, Durban, South Africa, 2015. / Fossil fuel reserves have been diminishing worldwide thus making them very scarce in the long term. These fuel sources and their by-products which are used commercially tend to produce large quantities of emissions. Some of them are believed to be toxic to flora and fauna. It is primarily for this reason that researchers worldwide have begun to seek out alternative sources of environmentally safe fuel. Biodiesel from algae is one of these sources that have been examined over the last few decades. Biodiesel has been produced from other plant-based material and waste oils in countries like America and Japan. However, the use of food based crops for biodiesel production has been challenged as it has an impact on food production on an international scale. Algae have only recently been investigated for their feasibility for biodiesel production on a large scale.
The aim of this study was to investigate and develop technologies for biodiesel production from algae. The species of algae chosen were chlorella sp and scenedesmus sp., since they are indigeneous to Kwazulu Natal in South Africa. Samples were obtained from a local raceway pond and prepared for analysis. Drying protocols used freeze, oven and sun drying for initial preparation of the samples for analysis. Sun drying was the least energy intensive but most time consuming. At laboratory scale, oven drying was chosen as the best alternative. Lipid extraction methods investigated were the separating funnel method, the soxhlet method, microwave assisted extraction (MAE) and the expeller press. Thirteen solvents covering a range of polarities were used with the extraction methods to determine the efficiency of the solvent with these methods. Optimization of the MAE method was conducted using both the one factor at a time (OFAT) method and a design of experiment (DOE) statistical method. The shelf life of algal biomass was determined by ageing the samples for approximately three months. Direct and in-situ transesterification of lipid extracts to produce biodiesel was investigated using both acid and base catalysis. Qualitative and quantitative analyses were conducted using Fourier transform infra-red (FTIR) and gas chromatography (GC). Chemical and physical characterization of the biodiesel produced from the algal lipid extracts were compared to both local and international standard specifications for biodiesel.
In terms of extraction efficiency, it was found that soxhlet and microwave assisted extraction methods were almost equally good. This was proved by the MAE method yielding an average of 10.0% lipids for chloroform, ethanol and hexane after 30 mL of solvent was used in an extraction time of 10 minutes, while the soxhlet method yielded 10.36% lipids using an extraction volume of 100 mL of solvent with an extraction time of 3 hours. Chloroform, ethanol and hexane were more efficient than the other ten solvents used. This was shown by these three solvents producing lipid quantities between 10% to 11% while all the other solvents produced lipid quantities between 2 and 10 %. The best extraction efficiency was achieved by the binary solvent mixture made up of chloroform and ethanol in a 1:1 ratio. Under the conditions optimized, this solvent ratio yielded a lipid content of 11.76%.
The methods chosen and optimized for extraction are very efficient, but the actual cost of production of biodiesel need to be determined. Physical methods like the expeller press are not feasible for extraction of the type of biomass produced unless algae are pelletized to improve extraction. This will impact on the cost of producing biodiesel. The transesterification protocols investigated show that the base catalysis produced biodiesel with a ratio of saturates to unsaturates conducive to a good fuel product. The direct esterification method in this study proved to be better than the in-situ method for biodiesel production. The in-situ method was also more labour intensive. Chromatography was found to be a fast and efficient method for qualitative and quantitative determination of biodiesel. Characterization tests showed that the quality of biodiesel produced was satisfactory. It also showed that the methods used in this study were feasible for the satisfactory production of biodiesel which meets local and international specifications.
|
Page generated in 0.0638 seconds