• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of a biofuels engine testing facility

Palmer, Duncan 12 1900 (has links)
Thesis (MScEng (Process Engineering))--Stellenbosch University, 2008. / This report covers the development of a biofuels engine testing facility at Stellenbosch University. The motivation for the project was three fold: a) a desire to establish biofuels and engine testing know-how; b) to test the performance characteristics of biodiesel; and c) make a facility available for future research. The two main conclusions drawn from the initial test results are: 1) the test cell is fully operational and 2) biodiesel can be substituted for mineral diesel. To the author’s knowledge this is the first biofuel specific engine testing facility in South Africa. After a literature study the test cell was realised in three phases. • Firstly, the hardware layout was designed and the necessary equipment was sourced from respectable suppliers including the judicious use of good qaulity second hand components to minimize capital cost. • The test cell was then instrumented with new sensors. Key components among these are the K-type thermocouples, barometric pressure, humidity, oil pressure and an Allen-Bradley programmable controller to serve as a data acquisition card. Two software programs were chosen, ETA for the control of the test cell and RSLogix to program the programmable logic controller (PLC). • The complete system was then integrated, debugged and validated. The design methods and procedures have been documented throughout the project along with user manuals to facilitate further research. To determine the difference in combustion parameters between biodiesel and mineral diesel an autonomous power curve test was conducted. This revealed little difference in terms of performance between the two fuels, although biodiesel had on average a marginal 0.4% decrease in power over mineral diesel. The fuel consumption for pure biodiesel was found to be higher, which is as expected as it is has a lower calorific value than mineral diesel. As a final validation, an energy balance was conducted. Here the calculated calorific value of biodiesel was compared to the results from a calorie bomb test, and the two results were found to be within 2% of each of other. / Centre for Renewable and Sustainable Energy Studies
2

A comparative study on the performance of biodiesel in a modern 1.9L turbo diesel engine

Kotze, Johan 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis comprises of the testing and evaluation of a modern diesel engine running on both biodiesel and mineral diesel on the upgraded Bio-fuels Testing Facility (BTF) at Stellenbosch University. The project was motivated by the need to install a modern diesel engine onto the existing BTF test rig for biodiesel testing. In this project, the BTF was re-designed to support a new Volkswagen 1.9L TDI engine. The capabilities of the BTF were then expanded further by the implementation of a low-cost pressure indicating system, utilising an optical pressure transducer. During the testing of biodiesel, it was found that the calorific value of the biodiesel was 14% lower than that of the tested mineral diesel. The ignition quality (cetane index) of the biodiesel was also lower than that of the mineral diesel. Even so, the engine only experienced a maximum power loss of 4.2%. During heat-release analysis, it was determined that there was no significant difference in the combustion process of biodiesel and that of mineral diesel. The conclusion could be made that biodiesel is suitable for use in modern TDI engines. Testing validated the operation of the upgraded test cell, and in trials it was determined that the test results are highly repeatable. The pressure indicating set proved to have some limitations. Only simplified heat-release analyses and reasonable indicated power calculations could be performed with the indicating set. Recommendations were made for improvement in future research. / Centre for Renewable and Sustainable Energy Studies

Page generated in 0.0733 seconds