Spelling suggestions: "subject:"biofysikalisk kein"" "subject:"biofysikaliska kein""
1 |
On the quantitative analysis of electronic energy transfer/migration in proteins studied by fluorescence spectroscopyIsaksson, Mikael January 2007 (has links)
Two recently developed theories of electronic energy transfer/migration were for the first time applied to real protein systems for extracting molecular distances. The partial donor-donor energy migration (PDDEM) is an extension to the previously developed donor-donor energy migration (DDEM, F Bergström et al PNAS 96, 1999, 12477) which allows using chemically identical but photophysically different fluorophores in energy migration experiments. A method based on fluorescence quenching was investigated and applied to create an asymmetric energy migration between fluorophores which were covalently and specifically attached to plasminogen activator inhibitor type 2 (PAI-2). It was also shown experimentally that distance information can be obtained if the fluorescence relaxation for photophysically identical donors, exhibits multi-exponential relaxation. An extended Förster theory (EFT) that was previously derived (L. B.-Å. Johansson et al J. Chem. Phys., 1996, 105) ha been developed for analysis of donor-acceptor energy transfer systems as well as DDEM systems. Recently the EFT was also applied to determine intra molecular distances in the protein plasminogen activator inhibitor type 1 (PAI-1) which was labelled with a sulfhydryl specific derivative of BODIPY. The EFT explicitly accounts for the time-dependent reorientations which in a complex manner influence the rate of electronic energy transfer/migration. This difficulty is related to the “k2-problem”, which has been solved. It is also shown experimentally that the time-correlated single-photon counting (TCSPC) data is sensitive to the mutual configuration between the interacting fluorophores. To increase the accuracy in the extracted parameters it is furthermore suggested to collect the fluorescence data under various physico-chemical conditions. It was also shown that the Förster theory is only valid in the initial part of the fluorescence decay.
|
2 |
Protein structure dynamics and interplay : by single-particle electron microscopyElmlund, Hans January 2008 (has links)
Single-particle cryo-electron microscopy (cryo-EM) is a method capable of obtaining information about the structural organization and dynamics of large macromolecular assemblies. In the late nineties, the method was suggested to have the potential of generating “atomic resolution” reconstructions of particles above a certain mass. However, visualization of secondary structure elements in cryo-EM reconstructions has so far been achieved mainly for highly symmetrical macromolecular assemblies or by using previously existing X-ray structures to solve the initial alignment problem. A factor that severely limits the resolution for low-symmetry (point group symmetry Cn) particles is the problem of ab initio three-dimensional alignment of cryo-EM projection images of proteins in vitreous ice. A more general problem in the field of molecular biology is the study of heterogeneous structural properties of particles in preparations of purified macromolecular complexes. If not resolved, structural heterogeneity limits the achievable resolution of a cryo-EM reconstruction and makes correct biological interpretation difficult. If resolved, the heterogeneity instead offers a tremendous biological insight into the dynamic behaviour of a structure, and statistical information about partitioning over subpopulations with distinct structural features within the ensemble of particles may be gained. This thesis adds to the existing body of methods in the field of single-particle cryo-EM by addressing the problem of ab initio rotational alignment and the problem of resolving structural heterogeneity without using a priori information about the structural variability within large populations of cryo-EM projections of unstained proteins. The thesis aims at making the single-particle cryo-EM method a generally applicable tool for generating subnanometer resolution reconstructions and perform heterogeneity analysis of biological macromolecules. / QC 20100719
|
3 |
Cloning, overexpression and biophysical characterization of grd/grl/wrt domains from<em> Caenorhabditis elegans</em> in<em> Escherichia coli</em>Lindberg, Marie January 2008 (has links)
<p>Hedgehog related genes have been shown to play a major role in development in all deuterostomes. In C.elegans, such genes have been found where the similarity is restricted to the C-terminal domain. This work has focused on the hedgehog related C.elegans proteins called ground (grd), ground-like (grl), and wart (wrt) which appear to form a unique structural family.These proteins are cysteine rich and have conserved cysteine patterns which, together with thethought that they are secreted, are expected to be in disulfide form. Since the extracellular environment is very oxidizing and due to the conserved cysteine pattern, disulfide bonds are thought to play a big part in the folding and stabilization of these proteins. The stability of the protein and the formation of a disulfide bond are related through a thermodynamic cycle, which insures that the stabilization of the protein by the disulfide is reflected by the identical stabilization of the disulfide by the protein. Practically, there are numerous parameters that can be used to try to achieve the correct disulfide bonds and folding, when doing in vitro trials, some of which were used in this project. C.elegans proteins grd-5, grd-13, grl-24, wrt-3 and wrt-5 were studied in this project. All of the proteins were expressed and purified with success, with theexception of grl-24. All constructs formed inclusion bodies. Some refolding attempts were performed on grd-13 and wrt-3. The presence of a disulfide bond in refolded grd-13 was demonstrated using chemical fragmentation. In general, these attempts did not give correctly folded proteins but provide a foundation to continue experiments aimed at producing a native-like protein for structural and functional studies.</p>
|
4 |
Infrared spectroscopy : Method development and ligand binding studiesKumar, Saroj January 2010 (has links)
Infrared spectroscopy detects molecular vibrations and assesses the properties of molecules and their environment. It is a powerful technique to detect ligand induced changes in biomolecules as it has distinct signals and provides different levels of structural information. An addition of a dialysis accessory to attenuated total reflection infrared spectroscopy makes this technique more universal for ligand binding studies. It facilitates to study ligand binding of substrates, activators, inhibitors and ions to macromolecules as well as effect of pH, ionic strength or denaturants on the structure of macromolecules, which play an important role in drug development. This method was tested with two proteins cyt c and calcium ATPase. We studied phosphoenol pyruvate (PEP) in different ionization states by infrared spectroscopy combined with theoretical analysis. Theoretical calculations helped to assign the bands. The infrared spectrum of labeled PEP and infrared measurement in D2O also helped in band assignment. We used the method dialysis accessory to attenuated total reflection infrared spectroscopy to investigate the binding of PEP and Mg2+ to pyruvate kinase (PK), where conformational changes of PK were revealed upon binding of PEP and Mg2+. Isotopic labeled PEP helped to assign and evaluate the infrared absorption bands. The difference spectrum of bound and free PEP indicates specific interactions between ligand and protein. The quantitative evaluation revealed that the enzyme environment has little influence on the P-O bond strengths, which are weakened by less than 3% upon binding. The carboxylate absorption bands indicate shortening of the C-O bond by as little as 1.3 pm. The binding of PEP to PK in presence of monovalent cations K+ and Na+ showed that the binding interactions are very similar. / doctoral
|
5 |
Cloning, overexpression and biophysical characterization of grd/grl/wrt domains from Caenorhabditis elegans in Escherichia coliLindberg, Marie January 2008 (has links)
Hedgehog related genes have been shown to play a major role in development in all deuterostomes. In C.elegans, such genes have been found where the similarity is restricted to the C-terminal domain. This work has focused on the hedgehog related C.elegans proteins called ground (grd), ground-like (grl), and wart (wrt) which appear to form a unique structural family.These proteins are cysteine rich and have conserved cysteine patterns which, together with thethought that they are secreted, are expected to be in disulfide form. Since the extracellular environment is very oxidizing and due to the conserved cysteine pattern, disulfide bonds are thought to play a big part in the folding and stabilization of these proteins. The stability of the protein and the formation of a disulfide bond are related through a thermodynamic cycle, which insures that the stabilization of the protein by the disulfide is reflected by the identical stabilization of the disulfide by the protein. Practically, there are numerous parameters that can be used to try to achieve the correct disulfide bonds and folding, when doing in vitro trials, some of which were used in this project. C.elegans proteins grd-5, grd-13, grl-24, wrt-3 and wrt-5 were studied in this project. All of the proteins were expressed and purified with success, with theexception of grl-24. All constructs formed inclusion bodies. Some refolding attempts were performed on grd-13 and wrt-3. The presence of a disulfide bond in refolded grd-13 was demonstrated using chemical fragmentation. In general, these attempts did not give correctly folded proteins but provide a foundation to continue experiments aimed at producing a native-like protein for structural and functional studies.
|
6 |
An Ultrafast Spectroscopic and Quantum-Chemical Study of the Photochemistry of Bilirubin : Initial Processes in the Phototherapy for Neonatal JaundiceZietz, Burkhard January 2006 (has links)
<p>Bilirubin is a degradation product of haem, which is constantly formed in all</p><p>mammals. Increased levels of bilirubin in humans lead to jaundice, a condition</p><p>that is very common during the first days after birth. This neonatal</p><p>jaundice can routinely be treated by phototherapy without any serious side</p><p>effects. During this treatment, bilirubin undergoes a photoreaction to isomers</p><p>that can be excreted. The most efficient photoreaction is the isomerisation</p><p>around a double bond (Z-E-isomerisation), which results in more soluble</p><p>photoproducts.</p><p>The work presented in this thesis shows results of a femtosecond optical</p><p>spectroscopy study, combined with quantum-mechanical investigations, of</p><p>the mechanism of isomerisation of bilirubin. The spectroscopic research was</p><p>conducted with bilirubin in organic solvents, and in buffer complexed by</p><p>human serum albumin. This albumin complex is present in the blood, and</p><p>has thus medical importance. Quantum-chemical calculations (CASSCF) on</p><p>a bilirubin model were used to explain experimental results.</p><p>The fluorescence decay observed with femtosecond spectroscopy shows an</p><p>ultrafast component (~120 fs), which is explained by exciton localisation,</p><p>followed by processes with a lifetime of about 1-3 ps. These are interpreted</p><p>as the formation of a twisted intermediate, which decays with a lifetime of</p><p>10-15 ps back to the ground state, as observed by absorption spectroscopy.</p><p>CASSCF calculations, in combination with the experimental results, suggest</p><p>the ca. 1-3 ps components to be relaxation to the twisted S1 minimum, followed</p><p>by the crossing of a barrier, from where further relaxation takes place</p><p>through a conical intersection back to the ground state.</p><p>Time-dependent DFT calculations were utilised to analyse the absorption</p><p>spectrum of bilirubin. Good agreement with the measured spectrum was</p><p>achieved, and low-lying states were observed, that need further investigation.</p><p>The theoretically obtained CD spectrum provides direct evidence that</p><p>bilirubin preferentially binds to human serum albumin in the enantiomeric</p><p>P-form at neutral pH.</p> / <p>Bilirubin är en nedbrytningsprodukt av hem som ständigt bildas hos alla</p><p>däggdjur. En förhöjd bilirubinkoncentration i den mänskliga kroppen kan</p><p>leda till gulsot, något som är mycket vanligt under de första dagarna efter</p><p>födelsen (neonatal gulsot). Fototerapi används rutinmässigt som säker behandlingsmetod,</p><p>under vilken bilirubin genomgår en fotoreaktion till en</p><p>isomer som kan utsöndras. Den mest effektiva fotoreaktionen är en Z-Eisomerisation,</p><p>vilken leder till lösligare fotoprodukter.</p><p>Arbetet som presenteras i denna avhandling visar resultaten av en kombinerad</p><p>femtosekund optisk-spektroskopisk och kvantmekanisk undersökning</p><p>av mekanismen bakom bilirubins isomerisation. Den spektroskopiska</p><p>studien genomfördes med bilirubin, löst i organiska lösningsmedel och i</p><p>buffert i komplex med humant serumalbumin. Detta albuminkomplex finns i</p><p>blodet, och är därför av medicinskt intresse. Kvantmekanistiska CASSCFberäkningar</p><p>på en bilirubinmodell användes för att förklara de experimentella</p><p>resultaten.</p><p>Det uppmätta fluorescence sönderfallet visar ultrasnabba komponenter</p><p>(~120 fs). Dessa tolkas som excitonlokalisering, som följs av bildandet av</p><p>ett vridet intermediat med en hastighetskonstant på ca. 1 ps-1(beroende på</p><p>lösningsmedlet). Absorptionsmätningar visar att detta intermediat sönderfaller</p><p>tillbaka till grundtillståndet med en livstid på 10-15 ps.</p><p>CASSCF beräkningar, i kombination med de experimentella resultaten, tyder</p><p>på att sönderfallet med livslängden på ca. 1 ps är en relaxation till det</p><p>vridna S1-tillståndet. Reaktionsvägen därifrån antas passera en barriär till en</p><p>konisk genomskärning, som möjliggör snabb relaxation till grundtillståndet.</p><p>Tidsberoende DFT-beräkningar användes för att analysera bilirubins absorptionsspektrum,</p><p>vilket gav bra överensstämmelse med uppmätta data. Dessutom</p><p>hittades ett tillstånd med låg excitationsenergi, som kräver ytterligare</p><p>studier. Med hjälp av det beräknade CD-spectret kunde det visas att bilirubin</p><p>binder till albumin i P-formen vid neutralt pH.</p>
|
7 |
An Ultrafast Spectroscopic and Quantum-Chemical Study of the Photochemistry of Bilirubin : Initial Processes in the Phototherapy for Neonatal JaundiceZietz, Burkhard January 2006 (has links)
Bilirubin is a degradation product of haem, which is constantly formed in all mammals. Increased levels of bilirubin in humans lead to jaundice, a condition that is very common during the first days after birth. This neonatal jaundice can routinely be treated by phototherapy without any serious side effects. During this treatment, bilirubin undergoes a photoreaction to isomers that can be excreted. The most efficient photoreaction is the isomerisation around a double bond (Z-E-isomerisation), which results in more soluble photoproducts. The work presented in this thesis shows results of a femtosecond optical spectroscopy study, combined with quantum-mechanical investigations, of the mechanism of isomerisation of bilirubin. The spectroscopic research was conducted with bilirubin in organic solvents, and in buffer complexed by human serum albumin. This albumin complex is present in the blood, and has thus medical importance. Quantum-chemical calculations (CASSCF) on a bilirubin model were used to explain experimental results. The fluorescence decay observed with femtosecond spectroscopy shows an ultrafast component (~120 fs), which is explained by exciton localisation, followed by processes with a lifetime of about 1-3 ps. These are interpreted as the formation of a twisted intermediate, which decays with a lifetime of 10-15 ps back to the ground state, as observed by absorption spectroscopy. CASSCF calculations, in combination with the experimental results, suggest the ca. 1-3 ps components to be relaxation to the twisted S1 minimum, followed by the crossing of a barrier, from where further relaxation takes place through a conical intersection back to the ground state. Time-dependent DFT calculations were utilised to analyse the absorption spectrum of bilirubin. Good agreement with the measured spectrum was achieved, and low-lying states were observed, that need further investigation. The theoretically obtained CD spectrum provides direct evidence that bilirubin preferentially binds to human serum albumin in the enantiomeric P-form at neutral pH. / Bilirubin är en nedbrytningsprodukt av hem som ständigt bildas hos alla däggdjur. En förhöjd bilirubinkoncentration i den mänskliga kroppen kan leda till gulsot, något som är mycket vanligt under de första dagarna efter födelsen (neonatal gulsot). Fototerapi används rutinmässigt som säker behandlingsmetod, under vilken bilirubin genomgår en fotoreaktion till en isomer som kan utsöndras. Den mest effektiva fotoreaktionen är en Z-Eisomerisation, vilken leder till lösligare fotoprodukter. Arbetet som presenteras i denna avhandling visar resultaten av en kombinerad femtosekund optisk-spektroskopisk och kvantmekanisk undersökning av mekanismen bakom bilirubins isomerisation. Den spektroskopiska studien genomfördes med bilirubin, löst i organiska lösningsmedel och i buffert i komplex med humant serumalbumin. Detta albuminkomplex finns i blodet, och är därför av medicinskt intresse. Kvantmekanistiska CASSCFberäkningar på en bilirubinmodell användes för att förklara de experimentella resultaten. Det uppmätta fluorescence sönderfallet visar ultrasnabba komponenter (~120 fs). Dessa tolkas som excitonlokalisering, som följs av bildandet av ett vridet intermediat med en hastighetskonstant på ca. 1 ps-1(beroende på lösningsmedlet). Absorptionsmätningar visar att detta intermediat sönderfaller tillbaka till grundtillståndet med en livstid på 10-15 ps. CASSCF beräkningar, i kombination med de experimentella resultaten, tyder på att sönderfallet med livslängden på ca. 1 ps är en relaxation till det vridna S1-tillståndet. Reaktionsvägen därifrån antas passera en barriär till en konisk genomskärning, som möjliggör snabb relaxation till grundtillståndet. Tidsberoende DFT-beräkningar användes för att analysera bilirubins absorptionsspektrum, vilket gav bra överensstämmelse med uppmätta data. Dessutom hittades ett tillstånd med låg excitationsenergi, som kräver ytterligare studier. Med hjälp av det beräknade CD-spectret kunde det visas att bilirubin binder till albumin i P-formen vid neutralt pH.
|
8 |
Membrane mediated aggregation of amyloid-β protein : a potential key event in Alzheimer's diseaseBokvist, Marcus January 2007 (has links)
The pathogenesis of Alzheimer’s disease (AD), the most common senile dementia, is a complex process. A crucial event in AD is the aggregation of amyloid-β protein (Aβ), a cleavage product from the Amyloid Precursor Protein (APP). Aβ40, a common component in amyloid plaques found in patients, aggregates in vitro at concentrations, much higher than the one found in vivo. But in the presence of charged lipid membranes, aggregations occurs at much lower concentration in vitro compared to the membrane-free case. This can be understood due to the ability of Aβ to get electrostatically attracted to target membranes with a pronounced surface potential. This electrostatically driven process accumulates peptide at the membrane surface at concentrations high enough for aggregation while the bulk concentration still remains below threshold. Here, we elucidated the molecular nature of this Aβ-membrane process and its consequences for Aβ misfolding by Circular Dichroism Spectroscopy, Differential Scanning Calorimetry and Nuclear Magnetic Resonance Spectroscopy. First, we revealed by NMR that Aβ40 peptide does indeed interact electrostatically with membranes of negative and positive surface potential. Surprisingly, it even binds to nominal neutral membranes if these contain lipids of opposite charge. Combined NMR and CD studies also revealed that the peptide might be shielded from aggregation when incorporated into the membrane. Moreover, CD studies of Aβ40 added to charged membranes showed that both positively and negatively membranes induce aggregation albeit at different kinetics and finally that macromolecular crowding can both speed up and slow down aggregation of Aβ.
|
9 |
On the mechanism of Urea-induced protein denaturationLindgren, Matteus January 2010 (has links)
It is well known that folded proteins in water are destabilized by the addition of urea. When a protein loses its ability to perform its biological activity due to a change in its structure, it is said to denaturate. The mechanism by which urea denatures proteins has been thoroughly studied in the past but no proposed mechanism has yet been widely accepted. The topic of this thesis is the study of the mechanism of urea-induced protein denaturation, by means of Molecular Dynamics (MD) computer simulations and Nuclear Magnetic Resonance (NMR) spectroscopy. Paper I takes a thermodynamic approach to the analysis of protein – urea solution MD simulations. It is shown that the protein – solvent interaction energies decrease significantly upon the addition of urea. This is the result of a decrease in the Lennard-Jones energies, which is the MD simulation equivalent to van der Waals interactions. This effect will favor the unfolded protein state due to its higher number of protein - solvent contacts. In Paper II, we show that a combination of NMR spin relaxation experiments and MD simulations can successfully be used to study urea in the protein solvation shell. The urea molecule was found to be dynamic, which indicates that no specific binding sites exist. In contrast to the thermodynamic approach in Paper I, in Paper III we utilize MD simulations to analyze the affect of urea on the kinetics of local processes in proteins. Urea is found to passively unfold proteins by decreasing the refolding rate of local parts of the protein that have unfolded by thermal fluctuations. Based upon the results of Paper I – III and previous studies in the field, I propose a mechanism in which urea denatures proteins mainly by an enthalpic driving force due to attractive van der Waals interactions. Urea interacts favorably with all the different parts of the protein. The greater solvent accessibility of the unfolded protein is ultimately the factor that causes unfolded protein structures to be favored in concentrated urea solutions.
|
10 |
NMR studies of protein dynamics and structureÅdén, Jörgen January 2010 (has links)
Enzymes are extraordinary molecules that can accelerate chemical reactions by several orders of magnitude. With recent advancements in structural biology together with classical enzymology the mechanism of many enzymes has become understood at the molecular level. During the last ten years significant efforts have been invested to understand the structure and dynamics of the actual catalyst (i. e. the enzyme). There has been a tremendous development in NMR spectroscopy (both hardware and pulse programs) that have enabled detailed studies of protein dynamics. In many cases there exists a strong coupling between enzyme dynamics and function. Here I have studied the conformational dynamics and thermodynamics of three model systems: adenylate kinase (Adk), Peroxiredoxin Q (PrxQ) and the structural protein S16. By developing a novel chemical shift-based method we show that Adk binds its two substrates AMP and ATP with an extraordinarily dynamic mechanism. For both substrate-saturated states the nucleotide-binding subdomains exchange between open and closed states, with the populations of these states being approximately equal. This finding contrasts with the traditional view of enzyme-substrate complexes as static low entropy states. We are also able to show that the individual subdomains in Adk fold and unfold in a non-cooperative manner. This finding is relevant from a functional perspective, since it allows a change in hydrogen bonding pattern upon substrate-binding without provoking global unfolding of the entire enzyme (as would be expected from a two-state folding mechanism). We also studied the structure and dynamics of the plant enzyme PrxQ in both reduced and oxidized states. Experimentally validated structural models were generated for both oxidation states. The reduced state displays unprecedented μs-ms conformational dynamics and we propose that this dynamics reflects local and functional unfolding of an α-helix in the active site. Finally, we solved the structure of S16 from Aquifex aeolicus and propose a model suggesting a link between thermostability and structure for a mesophilic and hyperthermophilic protein pair. A connection between the increased thermostability in the thermophilic S16 and residual structure in its unfolded state was discovered, persistent at high denaturant concentrations, thereby affecting the difference in heat capacity difference between the folded and unfolded state. In summary, we have contributed to the understanding of protein dynamics and to the coupling between dynamics and catalytic activity in enzymes.
|
Page generated in 0.2075 seconds