Spelling suggestions: "subject:"bioinformatic analyses"" "subject:"bioinformatics analyses""
1 |
AI MEET BIOINFORMATICS: INTERPRETING BIOMEDICAL DATA USING DEEP LEARNINGZiyang Tang (6593525) 20 May 2024 (has links)
<p>Artificial Intelligence driven approaches, especially based on deep learning algorithms, provided an alternative perspective in summarizing the common features in large-scale and complex datasets and aided the human professions in discovering novel features in cross-domain research. In this dissertation, the author proposed his research of developing AI-driven algorithms to reveal the real relation of complex medical data. The author started to identify the abnormal structures from the radiology images. When the abnormal structure was detected, the author built a model to explore the domain layers or cell phenotype of the specific tissues. Finally, the author evaluated cell-cell communication for the downstream tasks.</p>
<p><br></p>
<p>In his first research, the author applied IResNet, a two-stage prediction-interpretation Convolution Neural Network, to assist clinicians in the early diagnosis of Autism Spectrum Disorders (ASD). IresNet first predicted the input sMRI scan to one of the two categories: (1) ASD group or (2) Normal Control group, and interpret the prediction using a \textit{post-hoc} approach and visualized the abnormal structures on top of the raw inputs. The proposed method can be applied to other neural diseases such as Alzheimer's Disease. </p>
<p><br></p>
<p>When the abnormal structure was detected, the author proposed a method to reveal the latent relation at the tissue level. Thus the author proposed SiGra, an unsupervised learning paradigm to identify the domain layers and cellular phenotype in a particular tissue slide based on the corresponding gene expression matrix and the morphology representations. SiGra outperformed other benchmarking algorithms in three different tissue slides from three commercialized single-cell platforms.</p>
<p><br></p>
<p>At last, the author measured the potential interactions between two cells. The proposed spaCI, measured the correlation of a Ligand-Receptor interaction in the high-dimension latent space and predicted the interactive $L-R$ pair for downstream analysis. </p>
<p><br></p>
<p>In summary, the author presented three end-to-end AI-driven frameworks to facilitate clinicians and pathologists in better understanding the latent connections of complex diseases and tissues. </p>
|
2 |
Caractériser l'effet des cannabinoïdes sur la réponse nociceptive et identifier les cibles moléculaires chez Caenorhabditis elegansBoujenoui, Fatma 08 1900 (has links)
Ce projet de recherche porte sur l’étude de la régulation des systèmes cannabinoïdes et
vanilloïdes chez Caenorhabditis elegans (C. elegans), dans le but d’évaluer les effets antinociceptifs
du tétrahydrocannabinol (THC) et du cannabidiol (CBD). C. elegans est un modèle
largement utilisé pour étudier la nociception, visant principalement à caractériser les réponses
nociceptives induites par le THC et le CBD, ainsi qu’à identifier les mécanismes et les cibles
moléculaires impliqués. Les résultats des études sur l’utilisation du cannabis dans le traitement
de la douleur chronique chez les mammifères sont controversés. Cette recherche vise à étudier
l’effet du CBD et du THC sur la réponse nociceptive chez C. elegans et à approfondir la
compréhension des mécanismes pharmacologiques sous-jacents.
La méthodologie consiste à quantifier l’effet antinociceptif du CBD et du THC chez C. elegans par
la méthode de la thermotaxie. Les nématodes sauvages (N2) étaient exposés à des concentrations
croissantes de phytocannabinoïdes pour évaluer la relation concentration-effet. D’autres tests
étaient effectués sur des souches mutantes exprimant des récepteurs cannabinoïdes et
vanilloïdes afin d’identifier préalablement leurs cibles. Enfin, les analyses protéomiques et bioinformatiques
seront effectuées pour identifier les voies de signalisation et les processus
biologiques induits par l’interaction entre les phytocannabinoïdes et leurs cibles.
Cette étude démontre l’activité antinociceptive du CBD et du THC chez C. elegans avec des effets
rémanents pour THC, en ciblant respectivement le vanilloïde pour le CBD et le cannabinoïde pour
les systèmes THC. Les analyses protéomiques et bio-informatiques mettent en évidence des
différences significatives dans leurs voies de signalisation et leurs processus biologiques. / The objective of this research project was to focus on studying the regulation of cannabinoid and
vanilloid systems in Caenorhabditis elegans (C. elegans) to evaluate the anti-nociceptive effects
of tetrahydrocannabinol (THC) and cannabidiol (CBD). C. elegans is a widely used model for
studying nociception, with the main objective being to characterize nociceptive responses
induced by THC and CBD, as well as identify the underlying molecular mechanisms and targets
involved. Recent studies on the use of cannabis for the treatment of chronic pain in mammals
have shown controversial results. This research aims to investigate the effect of CBD and THC on
the nociceptive response in C. elegans and understand the underlying pharmacological
mechanisms.
The methodology consisted in quantifying the antinociceptive effect of CBD and THC in C. elegans
using the thermotaxis method. WT(N2) were exposed to decreasing concentrations of
phytocannabinoids to evaluate the dose and effect relationship. Further tests performed on
mutant expressing cannabinoid and vanilloid receptors allowed preliminarily identification of
their targets. Finally, proteomic and bioinformatics analyses were used to identify the signaling
pathways and biological processes induced by these phytocannabinoids.
The result of this study confirmed the antinociceptive effect of CBD and THC in C. elegans, with a
remanent effect of THC. This effect is mediated by the vanilloid system for CBD and the
cannabinoid system for THC, respectively. Also, proteomics and bioinformatics analyses revealed
significant differences in signaling pathways and biological processes.
|
Page generated in 0.0977 seconds