Spelling suggestions: "subject:"biolistics"" "subject:"diolistics""
1 |
Approaches to the genetic transformation of Sitka spruce (Picea sitchensis)Drake, Pascal M. W. January 1996 (has links)
No description available.
|
2 |
Genetic engineering of \kur{psbA} gene in \kur{Nicotiana tabacum}HUCKOVÁ, Dagmar January 2017 (has links)
Transformation vector with mutated psbA gene and selective aadA gene was created and transferred into Nicotiana tabacum living cells using Biolistic bombardment. Due to homologous recombination, transformed plant lineage carrying D1-A209, D1-C-212 instead of D1-S209, D1-S212 in D1 protein in PS II was obtained. Seeds from transformed plant were harvested and homoplasmy of the first generation was tested. These mutations caused higher thermostability in Synechocystis sp. PCC6803 so the transformed plant is expected to be the first step in the study of PS II thermostability in higher plants.
|
3 |
Novel applications of a modified gene gun : implications for new research in neuroscienceO'Brien, John Anthony January 2012 (has links)
The original Bio-Rad gene gun was unable to transfect acute or organotypic brain slices, as the amount of helium gas used, the distance for the gold-coated microcarriers to travel to target area were not optimised for fragile tissues, such as the brain. Typically, tissues were severely damaged by a helium shock wave and only a few cells were transfected. It was essential to improve gene gun accuracy by restricting the gold particles from being propelled superficially over a wide area. It was also necessary to increase the amount of DNA or dye delivery into intact tissues. Furthermore, for the gene gun to perform successfully on brain slices the helium gas pressure had to be lowered thereby reducing the degree of cell damage incurred during a biolistic delivery. Without knowing it at the time, the modified gene gun had worked particularly well on a variety of other fragile tissues, and not just the brain. However, the modified gun was not optimised for cultured cells as other transfection methods were available. A particularly notable point of this work was the successful labelling of individual Purkinje dendritic spines from live nerve cells in the cerebellum region of the brain. Biolistic images of Purkinje cells show that the distribution of dendritic spines are not random (O’Brien and Unwin, 2006). Spines were shown to grow in elaborate regular linear arrays, that trace short-pitch helical paths around the dendrites. It was apparent that the spines are arranged to maximize the probability that the dendritic arbour would interact with any afferent axon. This was an important discovery as there has been much debate as to how spines develop on a dendritic shaft. There are three general views to this question, each proposing a theory describing a model for spinogenesis. Classification of the three models in relation to our findings is described in chapter six of this thesis. The Investigation of spine morphology by biolistics was further optimized; gold particles were reduced from a micrometre to forty nanometres (O’Brien and Lummis, 2011), demonstrating that it is possible to use gold-coated DNA nanoparticles of this size to transfect tissue revealing exquisite structural detail. It was possible to observe boutons making synaptic contacts with the pyramidal nerve spines in the hippocampal region of the brain. The findings so far have shown spines from the pyramidal shaft are similar to the spines in the cerebellum, forming regular linear arrays. Recent studies had linked defects in the function of presynaptic boutons to the etiology of several neurodevelopment and neurodegenerative diseases, including autism and Alzheimer’s disease. Our discovery could help to understand why there are abnormalities in dendritic spines which are associated with pathological conditions characterized by cognitive decline, such as mental retardation, Alzheimer’s, stroke and schizophrenia (Yuste and Bonhoeffer, 2001). This thesis provides a synthesis of knowledge about biolistic technology. It is presented as a narrative from improving the gene gun transfection efficiency in brain slices to the development of nano-biolistics. The delivery of DNA and fluorescent dyes into living cells by biolistic delivery should enable a detailed map of the anatomical connections between individual cells and groups of cells to be constructed, providing a “wiring diagram” of connections. The implications of this are discussed in Chapter twelve. The original Bio-Rad gene gun was unable to transfect acute or organotypic brain slices, as the amount of helium gas used, the distance for the gold-coated microcarriers to travel to target area were not optimised for fragile tissues, such as the brain. Typically, tissues were severely damaged by a helium shock wave and only a few cells were transfected. It was essential to improve gene gun accuracy by restricting the gold particles from being propelled superficially over a wide area. It was also necessary to increase the amount of DNA or dye delivery into intact tissues. Furthermore, for the gene gun to perform successfully on brain slices the helium gas pressure had to be lowered thereby reducing the degree of cell damage incurred during a biolistic delivery. Without knowing it at the time, the modified gene gun had worked particularly well on a variety of other fragile tissues, and not just the brain. However, the modified gun was not optimised for cultured cells as other transfection methods were available. A particularly notable point of this work was the successful labelling of individual Purkinje dendritic spines from live nerve cells in the cerebellum region of the brain. Biolistic images of Purkinje cells show that the distribution of dendritic spines are not random (O’Brien and Unwin, 2006). Spines were shown to grow in elaborate regular linear arrays, that trace short-pitch helical paths around the dendrites. It was apparent that the spines are arranged to maximize the probability that the dendritic arbour would interact with any afferent axon. This was an important discovery as there has been much debate as to how spines develop on a dendritic shaft. There are three general views to this question, each proposing a theory describing a model for spinogenesis. Classification of the three models in relation to our findings is described in chapter six of this thesis. The Investigation of spine morphology by biolistics was further optimized; gold particles were reduced from a micrometre to forty nanometres (O’Brien and Lummis, 2011), demonstrating that it is possible to use gold-coated DNA nanoparticles of this size to transfect tissue revealing exquisite structural detail. It was possible to observe boutons making synaptic contacts with the pyramidal nerve spines in the hippocampal region of the brain. The findings so far have shown spines from the pyramidal shaft are similar to the spines in the cerebellum, forming regular linear arrays. Recent studies had linked defects in the function of presynaptic boutons to the etiology of several neurodevelopment and neurodegenerative diseases, including autism and Alzheimer’s disease. Our discovery could help to understand why there are abnormalities in dendritic spines which are associated with pathological conditions characterized by cognitive decline, such as mental retardation, Alzheimer’s, stroke and schizophrenia (Yuste and Bonhoeffer, 2001). This thesis provides a synthesis of knowledge about biolistic technology. It is presented as a narrative from improving the gene gun transfection efficiency in brain slices to the development of nano-biolistics. The delivery of DNA and fluorescent dyes into living cells by biolistic delivery should enable a detailed map of the anatomical connections between individual cells and groups of cells to be constructed, providing a “wiring diagram” of connections. The implications of this are discussed in Chapter twelve.
|
4 |
Production and transformation of tobacco and Brassica containing macrochloroplastsChikkala, Veera, veera.chikkala@rmit.edu.au January 2009 (has links)
Plastid division, sustained by the equilibrium expression and coordination of plastid division genes is vital for the maintenance of plastid populations in dividing plant cells. Macrochloroplasts (MCP), the occurrence of one or a few chloroplasts per cell is due to the imbalance in the expression of plastid division genes. Because of the MCP size and number it was proposed that they may provide better targets for the plastid transformation than the normal (WT) chloroplasts and result in better plastid transformation frequencies. The objective of this research was to produce transgenic plants containing macrochloroplasts by nuclear transformation and then to use these plants as a model for the development of plastid transformation of crop species. By using AtFtsZ1-1 and AtMinD1 as query sequences in the TIGR (U.S.A) and ASTRA (Australia) Brassica oleracea EST databases, this project resulted in the isolation of cauliflower FtsZ1-1 (EU684588) and MinD (EU684589) genes. In addition, AtFtsZ1-1 was used as a control gene for comparison to the cauliflower FtsZ1-1. Binary vectors were constructed to express these genes in tobacco and cauliflower either by Agrobacterium tumefaciens-mediated or PEG-mediated transformation methods. Transgenic tobacco and cauliflower plants with abnormal chloroplasts (MCP, minichloroplasts, honeycomb or doughnut shaped chloroplasts, uneven surface membrane chloroplasts) were developed. Furthermore, the transgenic tobacco and cauliflower plants were examined by PCR, RT-PCR and Southern blotting. In addition, th ese plants were also analysed for the different abnormal chloroplast phenotypes by fluorescence microscopy. This project also generated the first plastid transformants from macrochloroplast bearing tobacco plants via biolistics. After one round of regeneration homoplasmic plastid transformants were obtained from both WT chloroplast and MCP tobacco plants. The homoplasmic nature of plastid transformants were confirmed by PCR and Southern blotting. Plastid expression of GFP in WT and MCP was confirmed by fluorescence/confocal microscopy and western blot analysis. This project showed for the first time the characterisation of cauliflower FtsZ1-1 and MinD plastid division genes in homologous and heterologous systems (cauliflower and tobacco). Moreover, obtaining homoplasmic plastid transformant shoots from one round of regeneration from the MCP containing tobacco plants is reported for the first time in this study. In addition this study explored the effect of transgene expression level on the chloroplast abnormality, highlighting the importance of analysing transgenic tobacco and cauliflower plants at the protein lev el specifically with regard to plastid division genes. The maintenance of MCP phenotype in the regenerated shoots and the requirement of standardisation of MCP containing plants via biolistics for increasing the plastid transformation frequency were also examined.
|
5 |
A Substantive Theory to explain the Impact of Living with a Chronic Wound whilst receiving Conflicting or Inappropriate Advice or Care.Minnis, Andrea Margaret Bennett, andreaminnis@bigpond.com January 2009 (has links)
It is estimated that over 200,000 Australians have problem or chronic wounds at any one time (Australian Wound Management Association, 2008). Over the past 4 decades while there has been significant advancement in wound care, a high proportion of wounds become chronic. Despite the availability of wound care resources and specialist services, there remains an inconsistency in the management of chronic wounds that impacts both on the quality of life of individuals with chronic wounds and the health care budget (Harding 2002). Using a Grounded theory approach, the aim of this study was to explore and describe the impact of living with a chronic wound and findings indicate that individuals living with a chronic wound are receiving conflicting or inappropriate advice and care. Individuals living with a chronic wound experience a life of uncertainty related to the struggle to endure a wounded body and the layers of professional care they receive. When they are provided with conflicting or inappropriate advice and treatment, inconsistencies of care and poor coordination of care, layers of unnecessary burden are added to their experience. The uncertainty and dissonance individuals are faced with, leads them to question their care, themselves and the expertise and professionalism of their treating health professionals. As a result, they experienced a loss of respect and trust for their treating health professionals and a loss of confidence in their care. Chronic wounds impose of individuals, an intense burden of physical suffering, cause major disruption to the normality of their lives, and often entail a constant personal struggle to secure appropriate care and understanding from their treating health professionals. In order to enable individuals living with chronic wounds to develop appropriate coping strategies, it is essential that health professionals: understand the burden of suffering associated with living with a chronic wound; ensure that they develop and maintain a high level of knowledge with regards to contemporary wound care practices; ensure that their clientele are provided with high quality care information that is based on the best available evidence; ensure continuity of care; and foster quality professional-client relationships that negates the need for individuals to have to constantly question their care.
|
6 |
Regulation of somatic embryo development in Norway spruce (Picea abies) : a molecular approach to the characterization of specific developmental stages /Sabala, Izabela. January 1900 (has links)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 4 uppsatser.
|
7 |
Transformace ptDNA \kur{Chlamydomonas reinhardtii} / Transformation of \kur{Chlamydomonas reinhardtii} ptDNAHUSÁKOVÁ, Jana January 2011 (has links)
The aim of this master thesis was to test and compare two available methods of genetic transformation (biolistics, electroporation) of the plastid genome of green algae Chlamydomonas reinhardtii. For biolistic transformation a wide range of experimental parameters which generally influence ptDNA transformation efficiency was optimized: physiological condition of acceptor cells, type and size of microparticles, pressure of propulsion gas (helium), length of projectile trajectory, transformation of cells directly on selective medium (containing spectinomycin 150 ?g/ml) or on nonselective medium (without spectinomycin) and form of transforming DNA. In contrast to nuclear transformation ptDNA transformation of the experimental object C. reinhardtii by means of electroporation hadn´t been described. Hence a wide range of values of different physical parameters which can significantly influence the transformation efficiency was tested.
|
8 |
Cultura de tecidos e regeneração de plantas transgênicas a partir de calos embriogênicos e de folhas imaturas de cana-de-açúcar / Plant tissue culture and regeneration of transgenic plants from embryogenic callus and immature leaves of sugarcaneBarbosa, André Luiz 18 May 2010 (has links)
A cana-de-açúcar é uma monocotiledônea poliplóide, alógama que possui baixa taxa reprodutiva devido a dificuldade de florescimento. Devido estas características genéticas e fisiológicas os programas de melhoramento são longos e laboriosos. Alternativamente, modernas aplicações da biotecnologia visam contribuir com o desenvolvimento de novos cultivares. Neste trabalho estudou-se a metodologia de cultura de tecidos a partir de discos de folhas imaturas para o estabelecimento da cultura de calos embriogênicos e regeneração de plantas a partir dos calos embriogênicos e diretamente, a partir de folhas imaturas. O objetivo principal foi contribuir para o desenvolvimento de métodos eficientes para produção de plantas transgênicas a partir de calos e folhas imaturas, considerando-se a crescente necessidade de produção de novos cultivares com características agronômicas específicas. Diversas concentrações de 2,4-D e cinetina em meio MS foram testadas para o estabelecimento de calos altamente embriogênicos e para a indução da desdiferenciação celular nos discos foliares antecedendo a regeneração de plantas. Meios de cultura sem reguladores de crescimento (MS) e com a adição de BAP e ANA foram testados para a regeneração de plantas a partir de discos foliares. Calos embriogênicos com 12 a 20 semanas de cultivo produziram em média 3 a 5 plantas, em meio de regeneração MS. Folhas imaturas apresentaram elevado potencial de regeneração de plantas quando se utilizou 2,4-D em concentrações de 5 e 8 mg/L nos períodos de 5 e 8 dias no escuro. Houve indução a formação de embriões somáticos que resultaram em média 12 a 16 plantas por explante no período total de 7 a 10 semanas. Além disso, foi testado o pré-tratamento dos discos foliares em meio MS3K, contendo 2,4-D (3mg/L) e cinetina (0,1 mg/L), antes da transferência do discos para meio de regeneração MS. Os discos submetidos a este pré-tratamento durante 14, 21 e 28 dias apresentaram aumento significativo na eficiência de regeneração de plantas, variando em média de 41 a 50 plantas por disco foliar nas variedades RB835089 e RB855156. A redução no tempo para obtenção de plantas aliado ao aumento na média de plantas obtidas é a base para aumentar a eficiência de transformação genética de plantas. Experimentos de cotransformação dos genes neo e comt(AS), foram realizados por biolística. Em plantas regeneradas a partir de folhas imaturas da variedade RB835486, as análises de PCR confirmaram a incorporação do gene marcador neo em 57 e 90% das plantas em meio seletivo com geneticina (30 mg/L), sendo que a maior eficiência de regeneração de transgênicos (90%) foi obtida no pré-tratamento com o meio MS3K. Das plantas transgênicas para o gene neo, 7 e 38% também foram confirmadas para a incorporação do gene comt(AS). Nas plantas regeneradas a partir de calos embriogênicos em meio seletivo, as análises de PCR detectaram somente a incorporação do gene neo, o que ocorreu em 52% das plantas analisadas. Os resultados obtidos mostram que a cultura de discos de folhas imaturas para o processo de transformação genética por biolística é uma metodologia viável, rápida e menos onerosa, quando comparada com a cultura de calos embriogênicos. / Sugarcane is a polyploidy monocot and allogamous species that has low reproductive rate due to the difficulty of flowering. Because of these genetic and physiological characteristics breeding program takes long time and demand hard labor. Alternatively, modern biotechnology approaches contribute to the development of new cultivars. In this work we studied the methodology of plant tissue culture from immature leaf discs to establish callus culture and plant regeneration from those calli and from immature leaves, directly. The main objective was to contribute to the development of efficient methods to produce transgenic plants from callus and immature leaves, due to the growing need to produce new cultivars with specific agronomics traits. MS medium with different concentrations of 2,4-D and kinetin were tested to obtain highly embryogenic calli and to induce cellular dedifferentiation in the immature leaf discs prior to plant regeneration. Culture media without growth regulators (MS) and with the addition of BAP and NAA were tested for plant regeneration from leaf discs. Callus culture with 12 to 20 weeks resulted on average 3 to 5 plants on regeneration medium designed as MS. Immature leaves showed a high potential for plant regeneration when 2,4-D at concentrations of 5 and 8 mg/L in periods of 5 and 8 days in the dark. There were inducing of somatic embryos that resulted in average 12 to 16 plants per explant in the total period of 7 to 10 weeks. In addition, we tested the pre-treatment of leaf discs in MS3K medium which contain 2,4-D (3 mg/L) and kinetin (0.1 mg/L) before transfering to plant regeneration MS medium . The discs submitted to this pretreatment for 14, 21 and 28 days showed significant increase in the efficiency of plant regeneration, with on average of 41 to 50 plants per leaf disc in varieties RB835089 and RB855156. The reduction of time to obtain plants coupled with the increase of plants obtained is the basis for increasing the efficiency of plant genetic transformation. Co-transformation with genes neo and comt(AS), were performed by biolistics. Plants regenerated from immature leaves of the variety RB835486, PCR analysis confirmed the incorporation of the neo selection marker gene in 57 and 90% of the plants on selective medium with geneticin (30 mg/L), the higher efficiency of transgenic plants (90%) was obtained on pre-treatment in MS3K medium. Transgenic plants for the neo gene, 7 and 38% were also confirmed for the incorporation of comt (AS). PCR analysis of candidates transgenic plants from callus growing on selective medium, revelled only the insertion of the neo gene, which occurred in 52% of the analyzed plants. The results of this work showed that the approach of using immature leaf discs to obtain plant genetic transformation by biolistics methodology is a viable, cheaper and faster than using embryogenic callus.
|
9 |
Cultura de tecidos e regeneração de plantas transgênicas a partir de calos embriogênicos e de folhas imaturas de cana-de-açúcar / Plant tissue culture and regeneration of transgenic plants from embryogenic callus and immature leaves of sugarcaneAndré Luiz Barbosa 18 May 2010 (has links)
A cana-de-açúcar é uma monocotiledônea poliplóide, alógama que possui baixa taxa reprodutiva devido a dificuldade de florescimento. Devido estas características genéticas e fisiológicas os programas de melhoramento são longos e laboriosos. Alternativamente, modernas aplicações da biotecnologia visam contribuir com o desenvolvimento de novos cultivares. Neste trabalho estudou-se a metodologia de cultura de tecidos a partir de discos de folhas imaturas para o estabelecimento da cultura de calos embriogênicos e regeneração de plantas a partir dos calos embriogênicos e diretamente, a partir de folhas imaturas. O objetivo principal foi contribuir para o desenvolvimento de métodos eficientes para produção de plantas transgênicas a partir de calos e folhas imaturas, considerando-se a crescente necessidade de produção de novos cultivares com características agronômicas específicas. Diversas concentrações de 2,4-D e cinetina em meio MS foram testadas para o estabelecimento de calos altamente embriogênicos e para a indução da desdiferenciação celular nos discos foliares antecedendo a regeneração de plantas. Meios de cultura sem reguladores de crescimento (MS) e com a adição de BAP e ANA foram testados para a regeneração de plantas a partir de discos foliares. Calos embriogênicos com 12 a 20 semanas de cultivo produziram em média 3 a 5 plantas, em meio de regeneração MS. Folhas imaturas apresentaram elevado potencial de regeneração de plantas quando se utilizou 2,4-D em concentrações de 5 e 8 mg/L nos períodos de 5 e 8 dias no escuro. Houve indução a formação de embriões somáticos que resultaram em média 12 a 16 plantas por explante no período total de 7 a 10 semanas. Além disso, foi testado o pré-tratamento dos discos foliares em meio MS3K, contendo 2,4-D (3mg/L) e cinetina (0,1 mg/L), antes da transferência do discos para meio de regeneração MS. Os discos submetidos a este pré-tratamento durante 14, 21 e 28 dias apresentaram aumento significativo na eficiência de regeneração de plantas, variando em média de 41 a 50 plantas por disco foliar nas variedades RB835089 e RB855156. A redução no tempo para obtenção de plantas aliado ao aumento na média de plantas obtidas é a base para aumentar a eficiência de transformação genética de plantas. Experimentos de cotransformação dos genes neo e comt(AS), foram realizados por biolística. Em plantas regeneradas a partir de folhas imaturas da variedade RB835486, as análises de PCR confirmaram a incorporação do gene marcador neo em 57 e 90% das plantas em meio seletivo com geneticina (30 mg/L), sendo que a maior eficiência de regeneração de transgênicos (90%) foi obtida no pré-tratamento com o meio MS3K. Das plantas transgênicas para o gene neo, 7 e 38% também foram confirmadas para a incorporação do gene comt(AS). Nas plantas regeneradas a partir de calos embriogênicos em meio seletivo, as análises de PCR detectaram somente a incorporação do gene neo, o que ocorreu em 52% das plantas analisadas. Os resultados obtidos mostram que a cultura de discos de folhas imaturas para o processo de transformação genética por biolística é uma metodologia viável, rápida e menos onerosa, quando comparada com a cultura de calos embriogênicos. / Sugarcane is a polyploidy monocot and allogamous species that has low reproductive rate due to the difficulty of flowering. Because of these genetic and physiological characteristics breeding program takes long time and demand hard labor. Alternatively, modern biotechnology approaches contribute to the development of new cultivars. In this work we studied the methodology of plant tissue culture from immature leaf discs to establish callus culture and plant regeneration from those calli and from immature leaves, directly. The main objective was to contribute to the development of efficient methods to produce transgenic plants from callus and immature leaves, due to the growing need to produce new cultivars with specific agronomics traits. MS medium with different concentrations of 2,4-D and kinetin were tested to obtain highly embryogenic calli and to induce cellular dedifferentiation in the immature leaf discs prior to plant regeneration. Culture media without growth regulators (MS) and with the addition of BAP and NAA were tested for plant regeneration from leaf discs. Callus culture with 12 to 20 weeks resulted on average 3 to 5 plants on regeneration medium designed as MS. Immature leaves showed a high potential for plant regeneration when 2,4-D at concentrations of 5 and 8 mg/L in periods of 5 and 8 days in the dark. There were inducing of somatic embryos that resulted in average 12 to 16 plants per explant in the total period of 7 to 10 weeks. In addition, we tested the pre-treatment of leaf discs in MS3K medium which contain 2,4-D (3 mg/L) and kinetin (0.1 mg/L) before transfering to plant regeneration MS medium . The discs submitted to this pretreatment for 14, 21 and 28 days showed significant increase in the efficiency of plant regeneration, with on average of 41 to 50 plants per leaf disc in varieties RB835089 and RB855156. The reduction of time to obtain plants coupled with the increase of plants obtained is the basis for increasing the efficiency of plant genetic transformation. Co-transformation with genes neo and comt(AS), were performed by biolistics. Plants regenerated from immature leaves of the variety RB835486, PCR analysis confirmed the incorporation of the neo selection marker gene in 57 and 90% of the plants on selective medium with geneticin (30 mg/L), the higher efficiency of transgenic plants (90%) was obtained on pre-treatment in MS3K medium. Transgenic plants for the neo gene, 7 and 38% were also confirmed for the incorporation of comt (AS). PCR analysis of candidates transgenic plants from callus growing on selective medium, revelled only the insertion of the neo gene, which occurred in 52% of the analyzed plants. The results of this work showed that the approach of using immature leaf discs to obtain plant genetic transformation by biolistics methodology is a viable, cheaper and faster than using embryogenic callus.
|
10 |
Cultura de tecidos e transformação genética de espécies da família Poaceae / Tissue culture and genetic transformation of Poaceae family speciesCabral, Glaucia Barbosa 11 July 2012 (has links)
Brachiaria é um gênero de forrageiras da família Poaceae que apresenta plantas que se reproduzem por via sexual e assexualmente por apomixia,reprodução por sementes. A apomixia desperta interesse biológico e biotecnológico, pela perspectiva de levar esta característica de clonagem de plantas via sementes, a outras espécies. As cultivares plantadas de B. brizantha cv. Marandu e B. decumbens cv. Basilisk são poliplóides e reproduzem-se por apomixia, enquanto as plantas sexuais são diplóides,o que inviabiliza os cruzamentos, dificultando sobremaneira o melhoramento. A transformação genética é uma estratégia que vem sendo incorporada ao melhoramento genético. A natureza apomítica destasplantas pode permitir a clonagem e estabilidade das plantas transgênicas. Para transformação genética é necessário o desenvolvimento de um método eficiente de regeneraçãoin vitro. B. brizantha é considerada recalcitrante a cultura de tecidos, e métodos eficientes associados com os sistemas de transformação genética ainda não foram descritos na literatura. O arroz (Oryza sativa) é uma Poaceae modelo para estudos de genética inversa, no entanto, cultivares tropicais do grupo japônica são recalcitrantes a transformação genética, como é o caso da cultivar Primavera. O método direto de transformação genética mais amplamente utilizado é a biobalística, e vem sendo aplicado em espécies de monocotiledôneas, uma vez que essas não são hospedeiros naturais de Agrobacterium tumefaciens. No entanto, vários fatores tem sido testados no sentido de favorecer a interação e transferência de genes durante a cocultura para obtenção de transgênicos em diversas espécies de monocotiledôneas. Os objetivos deste estudo foram obter sistemas de regeneração in vitro deB. Brizanthae de arroz cultivar Primavera para transformação genética destas espécies. Em B. brachiaria foram obtidos sistema de micropropagação, organogênese, calos embriogênicos, unidades embriogênicas e suspensões celulares, e para a cultivar Primavera de arroz foram obtidas unidades embriogênicas, que foram caracterizadas morfo-anatomicamente e quanto as condições de indução, multiplicação e regeneração in vitro. Métodos de expressão transiente e estável de genes marcadores foram estabelecidos para B brizantha via biobalística e Agrobacterium tumefaciens. A natureza da transgenia foi confirmada por métodos histoquímico e molecular como PCR e Southern blot. Os sistemas de regeneração e transformação obtidos mostraram-se eficientes e irão contribuir para os estudos da apomixia e introdução de genes de interesse em braquiária / Brachiaria is a genus of Poaceae family forage grass that reproduces by sexual and asexually by apomixis. Apomixis is of biological and biotechnological interest awakened by the prospect of bringing this feature of cloning plants through seed to other species. B. brizantha cv. Marandu and B. decumbens cv. Basilisk are polyploid and reproduce by apomixis, while the sexual plants are diploid, which makes the crosses, greatly hindering the improvement. Genetic transformation is a strategy that is being incorporated into breeding programs. The nature of these apomictic plants may allow the cloning and the stability of transgenic plants. For genetic transformation is necessary to develop an efficient method of in vitro regeneration. B. brizantha is considered recalcitrant to tissue culture, and efficient methods associated with the genetic transformation systems have not been described in the literature. Rice (Oryza sativa) is a Poaceae model for studies of reverse genetics; however, tropical cultivars from japonica group are recalcitrant to genetic transformation, such as Primavera cultivar. Biolistic is the genetic transformation direct method most widely used, and has been applied to species of monocots, since these are not natural hosts of Agrobacterium tumefaciens. However, several factors have been tested in order to promote interaction and gene transfer during coculture for obtaining transgenics in several monocots species. The objectives of this study were to obtain in vitro regeneration and genetic transformation systems for these species. In B. Brachiaria systemsfor micropropagation, organogenesis, embryogenic units and embryogenic cell suspensions were obtained, and forrice Primavera cultivar embryogenic units were obtained, which was morpho-anatomical characterized and in vitro induction, proliferation and regeneration conditions established. Methods for transient and stable gene expression have been acquired for B. brizanthavia biolistic and Agrobacterium tumefaciens. The nature of the embryogenic callus and transgenic plants was confirmed by histochemical and molecular methods such as PCR and Southern blot. The regeneration and transformation systems showed to be effective and will contribute to apomixis studies and introduction of genes of interest in B. brizantha
|
Page generated in 0.1022 seconds