• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diseño y estudio de un reactor a escala banco para la biooxidación de azufre elemental

Allendes Arcos, Hans Mauro January 2014 (has links)
Ingeniero Civil Químico / Ingeniero Civil en Biotecnología / El presente trabajo reporta el estudio realizado en un reactor a escala banco para la oxidación biológica de perlas de azufre elemental, en el cual se genera ácido sulfúrico que será utilizado más adelante en la producción sustentable de fosfatos desde una roca fosfórica. Para lo anterior, se utilizó como punto de partida el cultivo de la arquea Sulfolobus metallicus en matraces agitados a 67°C, crecidas sobre perlas de azufre elemental. A partir de esta manipulación, se implementaron fases de escalamiento que contemplaron un reactor agitado tipo batch y su símil en modo continuo, ambos con condiciones de operación derivadas directamente de los matraces. En modo batch se monitorearon periódicamente el pH, acidez del medio, concentración de sulfato en solución y conteo de células planctónicas. Los resultados obtenidos indicaron un buen escalamiento desde los matraces, con valores similares a trabajos previos que utilizaron aquel sistema de reacción. Además, a partir de lo registrado en el conteo celular, se obtuvo una tasa específica de crecimiento celular (µ) en batch igual a 0,056 [h-1], desde la cual se propusieron 4 flujos de operación para el modo continuo, los cuales fueron de 0,9 1,8 2,7 y 3,6 [mL/min]. Con ellos en operación, se registraron las mismas variables evaluadas en batch, además de determinar el tiempo requerido para estabilizar el pH, medida usada en la detección de cada estado estacionario. Los registros variaron al aumentar el flujo, observando que las cantidades de ácido, sulfato y células disminuyeron, aumentando el pH en el biorreactor. Por su parte, el tiempo transiente necesario para alcanzar cada estacionario se situó en un rango entre 24 y 40 [horas]. A partir de los resultados de producción de ácido sulfúrico y sulfato en solución, se generó un modelo similar a los utilizados en fermentadores continuos, asumiendo la existencia de dos tipos de células: las adheridas al azufre y las suspendidas en el medio de reacción (planctónicas). El modelo se trabajó ignorando el crecimiento de las arqueas en suspensión, y siguiendo dos casos de estudio: suponer una tasa µ constante para todos los flujos versus un caso de µ variable por flujo. El modelo entregó valores para la tasa específica de crecimiento (el mejor de 0,022 [h-1]), además del rendimiento de producción por arquea (alrededor de 10-10 [g producto/arquea]). Este último resultado fue similar al utilizar ácido sulfúrico o sulfato indistintamente como medidas de producto. Además, un estudio de la aireación reveló que el sistema poseía un nivel de oxígeno adecuado para la operación, estimando una producción máxima posible de 0,0014 [g/min] de ácido sulfúrico. En conclusión, el sistema implementado resultó ser un exitoso primer acercamiento a la tecnología de reactores utilizando Sulfolobus metallicus creciendo sobre azufre elemental a 67°C, y debe someterse a un estudio de ingeniería más acabado, tal que permita realizar una biooxidación de azufre compatible con la necesidad de una lixiviación sostenible de fosfatos.
2

Integración y optimización del proceso químico y bacteriológico para la recuperación de fósforo a partir de residuos minerales

Godoy León, María Fernanda January 2013 (has links)
Ingeniera Civil Química / Ingeniera Civil en Biotecnología / En el presente informe se detalla el estudio desarrollado como trabajo de título, denominado Integración y Optimización del Proceso Químico y Bacteriológico para la Recuperación de Fósforo a partir de Residuos Minerales , el cual se enmarca en el proyecto "Recovery of phosphorous from Vale phosphate ore tailings applying bioleaching with autotrophic microorganisms". Se plantea un sistema compuesto por dos reactores, un reactor de biolixiviación de azufre en el cual se produce ácido sulfúrico por acción de la bacteria Acidithiobacillus thiooxidans, y un reactor de lixiviación de relave mineral en el cual se realiza la lixiviación química del relave por acción de dicho ácido sulfúrico. Ambos operan en conjunto en ciclo cerrado. La base de diseño son 100 ton/día de relave mineral. En base a este sistema se desarrolla un modelo matemático con el fin de simular la extracción de fósforo. Para desarrollar el modelo se plantean los balances de masa de cada especie implicada de cada reactor, así como las ecuaciones estequiométricas de producción y consumo de cada una de ellas. Se selecciona el modelo del núcleo sin reaccionar para modelar la lixiviación de fósforo, debido a lo cual es necesario ajustar manualmente curvas experimentales provenientes de publicaciones externas al proyecto, con el fin de determinar la etapa controlante de la lixiviación. También se selecciona la expresión cinética bacteriana a utilizar en la biolixiviación de azufre, escogiendo una que depende únicamente del pH del reactor. Se utilizan 17 parámetros, de los cuales 3 son variables: el pH del reactor de lixiviación cuyo valor varía entre 1 y 5; el parámetro p_(sólido/sol) (masa sólido dividida por masa de la solución del reactor de lixiviación) cuyo valor es 0,1-0,25-0,4; y el parámetro ε (volumen de azufre dividido por volumen del reactor de biolixiviación) cuyo valor es 0,01-0,05-0,1. Se obtuvo que lo óptimo es trabajar con un valor de porcentaje p/p de sólido versus solución (en el reactor de lixiviación química) de 25%; con un valor de volumen de azufre versus volumen del reactor de biolixiviación de 0,05 (equivalente a 10% de p/p de azufre versus solución del reactor), y de pH de operación del reactor de lixiviación química entre 1,4 y 1,5; con lo cual se obtiene un pH de operación del reactor de biolixiviación entre 1,1 y 1,2; un volumen para el reactor de lixiviación de 5 [m3], y un volumen para el reactor de biolixiviación de 17 [m3] aproximadamente. Los tiempos de residencia obtenidos para cada reactor son de aproximadamente 33 [min] y 21 [min], respectivamente.

Page generated in 0.055 seconds