• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle du facteur de transcription Meis2 dans les dérivés de la crête neurale par l'étude des souris Wnt1crecKOMeis2-/- et Islet1cre/+cKOMeis2-/- / Role of the transcription factor Meis2 in neural crest derivatives using Wnt1crecKOMeis2-/- and Islet1cre/+ cKOMeis2-/- strains

Birchenall, Alix 13 December 2012 (has links)
Le système nerveux somatosensoriel permet l'interaction entre l'organisme et son environnement. Ce système collecte, via des récepteurs périphériques, les stimuli extérieurs et les transmet au système nerveux central par les neurones sensoriels primaires, dont les corps cellulaires sont situés dans les ganglions rachidiens dorsaux. Ces neurones primaires sont spécifiques des différentes sensations et ont, pour y répondre, des récepteurs, des modalités sensorielles, des caractéristiques moléculaires différentes. Ils sont généralement séparés en 3 grandes familles: les propriocepteurs, les mécanocepteurs et les nocicepteurs, chacune de ces familles se séparant à son tour en une multitude de sous familles. Ces neurones dérivent de la crête neurale, une structure spécifique des vertébrés. Au cours de leur migration vers les ganglions rachidiens dorsaux, les cellules vont être soumises à un grand nombre de facteurs et de voies de signalisation, qui vont entrainer leur survie, leur mort ou leur différenciation. Le facteur de transcription Meis2 a été isolé par l'équipe comme un candidat pouvant intervenir dans cette différentiation des cellules en neurones différenciés. Chez les souris, son expression est spécifique de sous populations mécanoceptives et proprioceptives, et s'étend des stades précoces de développement jusqu'à l'âge adulte. La lignée conditionnelle de souris Knock Out pour Meis2, croisée avec la lignée Wnt1cre, permet l'abolition de Meis2 dans toutes les cellules de la crête neurale et ses dérivés. Le mutant issu de ce croisement meurt à la naissance, avec de nombreux problèmes phénotypiques. Cette lignée cKOMeis2 a alors été croisée avec la lignée Islet1cre, ce qui permet d'invalider le gène Meis2 dans les neurones post-mitotiques des ganglions rachidiens dorsaux. Cette souris m'a servi de modèle afin de déterminer les conséquences éventuelles de la perte de Meis2 dans les neurones sensoriels du ganglion rachidien dorsal par analyse comportementale. / The somatosensory nervous system allows the interaction between the organism and the environment. This system receives from peripheral receptors some exterior stimuli which are transmitted to the central nervous system by sensory primary neurons. Their cell bodies are located in the dorsal root ganglions (DRG). These primary neurons are specific to various sensations and are characterized by specific receptors, sensory modalities and molecular characteristics involved in their response. They are usually defined as belonging to one of three main families: proprioceptors, mecanoceptors and nociceptors, and each family is composed of a large number of subgroups. These neurons are derived from the neural crest cells to form the DRG. The cells are exposed to a number of key pathways and factors, which permit their survival, death or differentiation. The transcription factor Meis2 was isolated by our team as a good candidate to act in the differentiation or specification of these cells into sensory neurons. The expression pattern of Meis2 is shown to be specific to the mecanoceptor and proprioceptor subgroups and starts, in mice, from the early stages of development up to the adult age. To investigate the role of Meis2 the conditional strain mice Meis2 Knock Out (cKOMeis2) were crossed with the strain Wnt1cre which invalidates the gene Meis2 in all the neural crest and derived cells. The new born mice die at birth with most showing phenotypic dysfunctions. Finally, this cKOMeis2 strain was crossed with Islet1cre which specifically disrupts the Meis2 gene in post-mitotic DRG neurons. This thesis characterises the Islet1cre/+cKOMeis2LoxP/LoxP strain in order to determine the behavioural consequences of the loss of the Meis2 protein in DRG sensory neurons.
2

Transformation de l'information dans le système olfactif / Information processing in the olfactory system

Roland, Benjamin 30 September 2015 (has links)
Les comportements olfactifs nécessitent de reconnaitre les odeurs sur une large gamme de concentration tout en restant sensible aux changements de concentration. Pour accomplir cette tâche paradoxale, le système olfactif doit façonner des représentations des odeurs qui soient à la fois dépendantes et indépendantes de leurs concentrations.Nous avons combiné des techniques de génétique murine, microscopie biphotonique, et enregistrements neurophysiologiques extracellulaires pour caractériser l’activité neuronale en réponse aux odeurs dans le bulbe olfactif et le cortex olfactif (piriforme) de la souris. En utilisant une souris au « nez monoclonal », nous montrons que les circuits du bulbe olfactif sont capables d’amplifier les entrées sensorielles très faibles, et d’atténuer les entrées envahissantes. En revanche, nous observons que le niveau d’activité neuronale induite par les odeurs dans le cortex piriforme est globalement indépendant de leurs concentrations. En outre, nous avons identifié une sous-population de neurones du cortex piriforme encodant l’identité d’une odeur indépendamment de sa concentration. Nos résultats d’imagerie calcique in vivo et d’enregistrement neurophysiologiques suggèrent que cette invariance à la concentration dans le cortex piriforme est assurée par les interneurones positifs à la paravalbumine, une sous-population de neurones inhibiteurs.Ces résultats mettent en évidence deux étapes différenciées du traitement de l’information dans les voies neurales de l’olfaction : tandis que le bulbe olfactif normalise les entrées sensorielles, les microcircuits du cortex piriforme intègrent cette information en composantes sensorielles distinctes. / Olfactory behaviors require the identification of odors across a large range of different concentrations, yet are exquisitely sensitive to changes in odor concentrations. To accomplish this seemingly paradoxical task the olfactory system must generate odor representations that are, at once, both concentration-dependent and concentration-invariant.We have used a combination of mouse genetics, in vivo two-photon microscopy, and extracellular multielectrode recording techniques to characterize odor-evoked activity in the olfactory bulb and olfactory (piriform) cortex of mice. Taking advantage of a mouse with a “monoclonal nose” in which the sensory input map is strongly perturbed, we show that olfactory bulb circuits are able to amplify very weak sensory inputs, and to suppress pervasive input.In contrast, we found that the overall level of odor-evoked neural activity in the piriform cortex is largely concentration-invariant. Moreover, we identified a small subpopulation of odor-responsive piriform neurons, which encodes odor identity independent of concentration. In vivo calcium imaging and extracellular multielectrode recordings suggest that parvalbumin-expressing interneurons, a subpopulation of inhibitory neurons, mediate concentration invariance in the piriform cortex.These results highlight contrasting processing mechanisms of sensory information along the olfactory pathway: while the olfactory bulb normalizes sensory inputs, microcircuits of the piriform cortex integrate this information into distinct sensory features. This process may allow for the simultaneous representation of identity and intensity in the olfactory system.
3

Sensory adaptations in shrimp from deep hydrothermal vents : Comparison of chemo‐ and thermo-sensory abilities in the vent species Mirocaris fortunata and the coastal species Palaemon elegans / Adaptations sensorielles chez les crevettes hydrothermales profondes : comparaison des facultés chimio et thermo-sensorielles de la crevette hydrothermale mirocaris fortunata et de la crevette côtière palaemon elegans

Machon, Julia 02 October 2018 (has links)
Les crevettes Alvinocarididae sont emblématiques des sources hydrothermales de la Dorsale Médio-Atlantique, mais les mécanismes qui leur permettent de détecter leur habitat sont énigmatiques. Il est supposé que les signatures chimique et thermique du fluide hydrothermal leur servent de repères pour s’orienter. Les facultés chimio- et thermosensorielles de l’espèce hydrothermale Mirocaris fortunata et de l’espèce côtière Palaemon elegans ont été étudiées avec plusieurs approches. Des traits structuraux du système sensoriel périphérique et central ont été comparés pour inférer sur les facultés olfactives de chaque espèce. L’expression du récepteur ionotropique IR25a dans les organes chimiosensoriels a été mesurée. Une technique d’électroantennographie a été mise au point afin de tester la détection de composés chimiques de fluide hydrothermal par les crevettes. Plusieurs expériences à pression atmosphérique et in situ ont été réalisées afin d’étudier le comportement des espèces hydrothermale et côtière exposées à une odeur de nourriture, du sulfure ou des températures relativement chaudes. L’ensemble des résultats montre que M. fortunata présente un système chimio- et thermosensoriel fonctionnel et apporte des bases substantielles pour approfondir les connaissances sur les adaptations sensorielles en milieu hydrothermal profond. / Alvinocaridid shrimp are an emblematic taxon at hydrothermal vents on the Mid-Atlantic Ridge, but how they locate active vents and detect their habitat is still enigmatic. They might use the chemical and thermal signatures of the hydrothermal fluid as orientation cues. The chemo- and thermosensory abilities of the hydrothermal species Mirocaris fortunata and the coastal species Palaemon elegans were investigated using various approaches. Structural features of the peripheral and central nervous system were used as rough estimates of their olfactory abilities. The co-ionotropic receptor IR25a, involved in chemodetection, was identified and located in the antennal appendages. A new electroantennography method was developed to test the detection of hydrothermal fluid chemicals. Several attraction tests were conducted at atmospheric and in situ pressure to investigate the behavior of the vent and shallow-water species when exposed to a food odor, sulfide and warm temperatures. Altogether, these results provide advances in the knowledge of the chemosensory biology of vent shrimp, and a substantial background for future researches on sensory adaptations to the hydrothermal environment.

Page generated in 0.07 seconds