Spelling suggestions: "subject:"biologisk oxidation"" "subject:"etiologisk oxidation""
1 |
Biologisk avskiljning av järn och mangan vid dricksvattenproduktion : Reningskapacitet i pilotfilter med HUFO-diskar och kalcedonmassaSaleh, Alan January 2021 (has links)
Människan har påverkat klimatet på ett negativt sätt genom olika sorters aktiveter vilket lett till att en global uppvärmning är på gång. Temperaturen på jorden kommer därmed att förändras vilket i sin tur kommer leda till en förändring i vattnets kretslopp. Råvattenkvaliteten förväntas försämras och leda till stora anpassningskostnader. Klimatförändringarna kommer att innebära ökade mängder av organiskt material i både ytvatten och grundvatten vilket i sin tur kommer leda till ökade halter av järn och mangan. Luftning och abiotisk/biotisk oxidation används idag för att avskilja järn och mangan från råvattnet. Biologisk oxidation anses idag vara den snabbaste och mest energi- och kostnadseffektiva metoden för avskiljning av både järn och mangan. Biologisk oxidation kan tillämpas även om järnet är komplexbundet till organiskt material eller om vattnet inte har ett optimalt pH. Två typer av pilotfilter för biologisk oxidation testades och utvärderades i detta arbete, ett med kalcedonmassa och ett med HUFO-diskar. Pilotfiltret med kalcedonmassa fungerade bra och avlägsnade ungefär 85% av järnet och cirka 30% av manganet i råvattnet. Pilotfiltret kunde redan första driftveckan filtrera järn och mognadstiden för den biologiska oxidationen av mangan var ungefär 50 dagar. Pilotfiltret med HUFO-diskar lyckades inte avlägsna utfällt järn som inte adsorberat på HUFO-diskarna vilket med stor sannolikhet berodde på att den metod vi valt för pilotförsöket (störttappning) inte fungerat optimalt för denna typ av filter. Analysresultaten blev till följd av detta svårtolkade då de visade en förhöjd halt av järn på utgående vatten. Även mognadstiden för den biologiska oxidationen av mangan blev svårbestämd för pilotfiltret med HUFO-diskar p.g.a. ovan nämnda orsaker. Det finns därmed en stor förbättringspotential vad gäller genomförandet av HUFO-försöket. En annan metod än störttappning som t.ex. backspolning skulle troligtvis göra det möjligt att avskilja även de järn- och manganpartiklar som inte lyckats få fäste på HUFO-diskarna. Sammanfattningsvis så visar resultaten från pilotfilterförsöken att det är möjligt att avskilja järn och mangan på ett bra sätt med hjälp av kalcedonmassa, utan tillsatser av kemikalier eller behov av kraftig luftning. / Humans have affected the climate negative through various types of activities which have led to global warming. This will lead to a change in temperature which in turn will change the hydrological cycle. The quality of raw water is expected to deteriorate and lead to large adjustment costs. Climate change will also lead to increased amounts of organic matter in both surface water and groundwater, which in turn will lead to increased levels of iron and manganese. Aeration and abiotic/biotic oxidation are used today to separate iron and manganese from the raw water. The biological oxidation is considered to be the fastest method for the separation of both iron and manganese. Not only is it the fastest but also more energy- and cost efficient. Biological oxidation is also applicable if the iron is complex bound to organic material or if the water does not have optimal pH. Two types of pilot filter for biotic oxidation were tested and evaluated in this work, one with chalcedony sand and the other one with HUFO-discs. The pilot filter with chalcedony sand worked well and removed 85% of the iron and about 30% of the manganese in the raw water. The pilot filter could already during the first week of operation filtrate iron, and the ripening time for the biotic oxidation of manganese was approximately 50 days. The pilot filter with HUFO-discs did not manage to remove precipitated iron, which probably depended on the pouring method chosen for the trials, which did not turn out to be optimal for this type of filter. This is also why the results were difficult to interpret since the content of iron in the water was actually higher after the filtration compared to the raw water. Even the ripening time was difficult to determine for the biotic oxidation of manganese because of the non-effective pouring method for removing precipitated elements. This is also why there is a great potential for improvement considering the pilot filter with HUFO-discs. Another method such as backwashing would probably make it possible to wash out the precipitated iron- and manganese particles that had not adsorbed onto the HUFO-discs. In summary, the results from the pilot filter experiments show that it is possible to separate iron and manganese from water with the help of chalcedony sand without addition of chemicals or the need for a more vigorous aeration.
|
2 |
Biologisk avskiljning av järn och mangan i grundvattenverk : En studie i Klöverträsk med avseende på beredningsuppehåll och årstidsvariationer i råvattenkvalitet / Biological oxidation of iron and manganese in groundwater plants : A study in Klöverträsk with regard to production breaks and seasonal variations in raw water qualityHedlund Nilsson, Emelie January 2019 (has links)
Groundwater is an important source of fresh water on earth. A source that is also affected by climate change. Climate change is expected to influence both the groundwater quality and the groundwater level, where elevated levels of iron and manganese in the groundwater are to be expected. In Sweden guideline values are set for iron and manganese in drinking water, which means that waterworks that use groundwater as raw water must treat the water when the guidline values are exceeded. A common treatment step to remove iron and manganese is abiotic oxidation with a chemical oxidant. A relatively new method is biological oxidation where microorganisms oxidize the metals. Biological oxidation has proven to be a faster process than chemical oxidation and better adapted to variations in raw water quality. In this work the possibility of biological oxidation of iron and manganese at smaller groundwater plants with day-to-day production breaks has been studied. The study also concern how seasonal variations in raw water quality might affect the oxidation ability of the microorganisms. During the study a pilot filter for biological oxidation was constructed where the efficiency of the filter and the raw water quality was measured during a one-year test. After a short start-up time for iron oxidation the pilot filter reduced iron in the raw water up to 92 % and after a longer start-up time for manganese oxidation the pilot filter reduced manganese from the raw water up to 97 % during the rest of the test period. The results show that biological oxidation is possible at smaller groundwater plants despite production breaks. The results also show that biological oxidation is not affected by the vaiations i raw water quality that was measured during the test period. Furthermore, the results show that biological oxidation is equally efficient as the chemical oxidation, at the investigated groundwater plant, in terms of removing iron and even more efficient in terms of removing manganese. In addition the biological oxidation do not require pH adjustment or addition of any chemicals. The results indicate that biological oxidation of iron and manganese is a more favorable alternative to chemical oxidation in smaller groundwater plants on the impact of climate change on raw water quality.
|
Page generated in 0.1102 seconds